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Best affine approximations

The following definitions should look very familiar.

Definition Suppose f : R™ — R" is defined on an open ball containing the point c.
We call an affine function A : R™ — R" the best affine approximation to f at c if (1)
A(c) = f(c) and (2) ||R(h)]| is o(h), where

R(h) = f(c+h) — A(c+ h). (4.2.1)

Suppose A : R" — R" is the best affine approximation to f at ¢. Then, from our work
in Section 1.5, there exists an n x m matrix M and a vector b in R" such that

A(x) = Mx +b (4.2.2)

for all x in R™. Moreover, the condition A(c) = f(c) implies f(c) = Mc + b, and so
b = f(c) — Mc. Hence we have

A(x)=Mx+ f(c)— Mc=M(x—c)+ f(c) (4.2.3)
for all x in R™. Thus to find the best affine approximation we need only identify the

matrix M in (4.2.3).

Definition Suppose f : R™ — R" is defined on an open ball containing the point c. If
f has a best affine approximation at c, then we say f is differentiable at c. Moreover, if
the best affine approximation to f at c is given by

A(x) = M(x —c) + f(c), (4.2.4)

then we call M the derivative of f at ¢ and write Df(c) = M.

Now suppose f : R™ — R"™ and A is an affine function with A(c) = f(c). Let fx and
Ay be the kth coordinate functions of f and A, respectively, for Kk =1,2,...,n, and let R
be the remainder function

R(h) = f(c+h) — A(c+ h)
= (file+h) = Ai(c+h), fo(c +h) — As(c + h),..., fu(c +h) — A, (c + h)).
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Then
R(h) _ (f1(c+h) —Ai(c+h) fa(c+h)—Ay(c+h) fn(c+h) —An(c+h)>
[l [l ’ [l [l ’
and so IR(h]

that is, A is the best affine approximation to f at c, if and only if

lim fr(c+h) — Ag(c+h)
h—0 [h

=0 (4.2.6)

for k =1,2,...,n. But (4.2.6) is the statement that Ay is the best affine approximation to
fir at c. In other words, A is the best affine approximation to f at c if and only if Ay is the
best affine approximation to fi at ¢ for £ = 1,2,...,n. This result has many interesting
consequences.

Proposition If f; : R™ — R is the kth coordinate function of f : R™ — R", then f is
differentiable at a point c if and only if f; is differentiable at ¢ for £k =1,2,...,n.

Definition If f; : R™ — R is the kth coordinate function of f : R™ — R", then we say
fis C' on an open set U if f, is C' on U for k =1,2,...,n.

Putting our results in Section 3.3 together with the previous proposition and definition,
we have the following basic result.
Theorem If f : R™ — R" is C! on an open ball containing the point c, then f is
differentiable at c.

Suppose f: R™ — R" is differentiable at ¢ = (¢1, ¢, ..., ¢y) with best affine approxi-
mation A and f : R™ — R and A; : R™ — R are the coordinate functions of f and A,
respectively, for £k = 1,2,...,n. Since Ay is the best affine approximation to f at c, we
know from Section 3.3 that

Ap(x) =V fr(c) - (x—c)+ fr(c) (4.2.7)
for all x in R™. Hence, writing the vectors as column vectors, we have

B Al (X)
A2 (X)
4, (%)
" Vfi(e) (x—c¢)+ filc)

— | Vfa(c) - (x=c¢) + fa(c)

[V fu(c)  (x - ) + fulc)
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A fi(©) - hi(e)
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9 9 o j?(f;)
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8 a Tm — Cm fm (C)
o f©) e (o) |

It follows that the n x m matrix in (4.2.8) is the derivative of f.

Theorem If f: R™ — R" is differentiable at a point ¢, then the derivative of f at c is

given by

Df(c) =

) 9 9 ]

8_:1:1f1(c) a—@fl(c) afl(c)

) 9 4

o P20 g-fale) o o) | (4.2.9)
o ol g

8_aclfn(c) 8_1:2fn<c) ﬂfn(c)_

We call the matrix in (4.2.9) the Jacobian matriz of f, after the German mathematician
Carl Gustav Jacob Jacobi (1804-1851). Note that we have seen this matrix before in our
discussion of change of variables in integrals in Section 3.7.

Example Consider the function f : R* — R? defined by

flx,y,2) = (zyz, 3z — 2yz).

The coordinate functions of f are

and

Now

and

so the Jacobian of f is

Hence, for example,

Df(m,y,z) = {ygz 94

Df(1,2,—1):[_3 o _ul-

fl(fl:,y,z) = TYz

f2($7y72) =3z — 2y2
vfl(xvyv Z) = (yz,xz,xy)
vf2(x7 Y, Z) = (37 _227 _23/);

Tz  xy |
_2y- .

2 —1 2]
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Since f(1,2,—1) = (—2,7), the best affine approximation to f at (1,2,

Tangent planes
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Az,y,z) =
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—1)is

[—2 -1 2} :;:; +{—2}

[ 32 Y 7

2z —1)—(y—2)+2(z+1)—2

| 3(x—1)+2(y—2)—4(z+1)+7

[ 22 —y+22+4

| 3z +2y—4z—4

Suppose f : R* — R? parametrizes a surface S in R®. If f1, fo, and f3 are the coordinate
functions of f, then the best affine approximation to f at a point (sg,to) is given by

A(s, t)

If the vectors

and

0
%fl(t()a SO)

0
%fQ(t()a SO)

%fS(t()us())

0
afl(f)‘o, to)

0
£f2(50,t0)

%f:’,(so,to)

%fl (t07 80) ]
f1(507 tO)
f2(s0,t0)

0 s — 8o
_f2(t0780) |: _ :| +
%t E=to ] F(s0,to)

af?,(to,so)

0
afl(so,to)

0
afz(soato)

0
_af:s(so,to)_

f1(s0,%0)
f2(807 tO)
f3(80,to)

(8 — 80) + (t — to) + (4210)

0
%fl(s(% tO)

9ty (s0.to) (12.11)

0s

0
_%J%(S()at())_

0
Efl(s(h tO)

9 b (s0.t0) (4.2.12)

ot

0
_Ef?,(soyto)_

are linearly independent, then (4.2.10) implies that the image of A is a plane in R? which
passes through the point f(sg,tp) on the surface S. Moreover, if we let C; be the curve



Section 4.2 Best Affine Approximations 5

on S through the point f(so,to) parametrized by ¢1(s) = f(s,t9) and Ca be the curve on
S through the point f(sg, tp) parametrized by ¢2(t) = f(so,t), then v is tangent to Cy at
f(s0,t0) and w is tangent to Co at f(so,to). Hence we call the image of A the tangent
plane to the surface S at the point f(sg,to).

Example Let T be the torus parametrized by
f(s,t) = ((3 4 cos(t)) cos(s), (3 + cos(t)) sin(s), sin(t))
for 0 < s <2mand 0 <t <27 Then
—(3 4 cos(t))sin(s) —sin(t) cos(s)
Df(s,t) = (34 cos(t)) cos(s) —sin(t)sin(s)
0 cos(t)

Thus, for example,

] ' ]
‘(“ﬁ) 01

pf(37)= 0 ‘ﬁ
! 7 |

Since

13- (050 )
%

the best affine approximation to f at (%, ) is
-—<3+ 1) 0 ] 0
AN IEE R r
A(s,t) = 0 —— + V2
1/5 P 1
4 —
0 — 2
L V2 V2
i ( 1 | "1
S R [ R e 1 N e
2 1 4 1
O N —_
- V2 V2
Hence
r=—(3+ = <s—7r)
= > 5)
S (t-T)+3+ !
y_ \/§ 4 27
1 (t 7r)+ 1
= —= - =
2 4 2
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Figure 4.2.1 Torus with a tangent plane

are parametric equations for the plane P tangent to T at (O,S + \%, \%) See Figure
4.2.1.

Chain rule

We are now in a position to state the chain rule in its most general form. Consider functions
g :R"™ — R?and f: R? — R" and suppose g is differentiable at ¢ and f is differentiable
at g(c). Let h: R™ — R" be the composition h(x) = f(g(x)) and denote the coordinate
functions of f, g, and h by fi, 1 =1,2,...,n,¢9;,j =1,2...,q, and hy, k = 1,2,...,n,
respectively. Then, for k =1,2,...,n,

hk(*rlva’;?v s 7xm) - fk(gl(x17x27 CE ,CL'm),QQ(.Tl,ZEQ, s 7xm)7 CR ,gq(l'l,l'Q, s 7xm))

Now if we fix m — 1 of the variables x1, x2, ..., Ty, say, all but z;, then hy is the
composition of a function from R to RY with a function from R? to R. Thus we may use
the chain rule from Section 3.3 to compute z2-hy(c), namely,

S ul€) = Vhu(a(e)) - ({6 @) 2,0
= a%fk(g(c»%gl (c) + %fk(g(C))%gz(c)+ (42.13)

ot %fk(g(c))(%qu(c)-

q
Hence %hk(c) is equal to the dot product of the kth row of D f(g(c)) with the jth column
of Dg(c). Moreover, if g is C! on an open ball about ¢ and f is C'! on an open ball about
g(c), then (4.2.13) shows that %hk is continuous on an open ball about c. It follows from

our results in Section 3.3 that h is differentiable at c. Since %hk is the entry in the kth

row and jth column of Dh(c), (4.2.13) implies Dh(c) = D f(g(c))Dg(c). This result, the
chain rule, may be proven without assuming that f and g are both C!, and so we state
the more general result in the following theorem.
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Chain Rule If g : R™ — R is differentiable at ¢ and f : R? — R" is differentiable at
g(c), then f o g is differentiable at ¢ and

D(f o g)(c) = Df(g(c))Dy(c). (4.2.14)

Equivalently, the chain rule says that if A is the best affine approximation to g at ¢ and
B is the best affine approximation to f at g(c), then Bo A is the best affine approximation
to f og at c. That is, the best affine approximation to a composition of functions is the
composition of the individual best affine approximations.

Example Suppose g : R? — R? is defined by
g(s,t) = (cos(s)sin(t),sin(s) sin(t), cos(t))
and f : R® — R? is defined by

f(x7y7’z) = (10$y27$2 - yZ)

Then
—sin(s)sin(t) cos(s) cos(t)
Dg(s,t) = cos(s)sin(t) sin(s) cos(t)
0 —sin(t)
and

10yz 10xz 10z

Let h(s,t) = f(g(s,t)). To find Dh (%, %), we first note that

<7r 7'(‘)_ 11 1
g 474 - 2727\/§ 9

. L -
-5 ;
po(f0)-| 3 3
1
0
and 5 5 5
oi)-nig)-[ 4
V2 o2
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ThUS m™ T m T ™ T
Dh(§q) =PI (9(1’1»179(4’41) -
5 5 511 2 2
B R A
- 1 1 2 2
B Rl I
_ 5 - \/5_
Sl 1+v2 1
L 2v2 2
Problems

1. Find the best affine approximation for each of the following functions at the specified

point c.
(a) f(z,y) = (2® + y* 3zy), c = (1,2)
(b) g(x,y,2) = (sin(z + y + 2), zy cos(2)), ¢ = (0,§, )

(c) h(s,t) = (3s® +t,s —t,4st? 4t — s), c = (—1,3)

. Each of the following functions parametrizes a surface S in R®. In each case, find
parametric equations for the tangent plane P passing through the point f(sg,?g). Plot
S and P together.

(a) f(s,t) = (tcos(s), tsin(s),t), (so.to) = (5,2)

(b) f(s,t) = (t? cos(s), t?,t?sin(s)), (so0, o) = (0,1)

(¢) f(s,t) = (cos(s)sin(t),sin(s)sin(t),cos(t)), (so.t0) = (5. 5)

(d) f(s,t) = (3cos(s)sin(t),sin(s) sin(t), 2 cos(t)), (so,t0) = (5, %)

(e) f(s,t) = ((4+ 2cos(t))cos(s), (4 + 2cos(t))sin(s), 2sin(t)), (so,t0) = (3£, %)

. Let S be the graph of a function f : R*> — R. Define the function F : R* — R3
by F(s,t) = (s,t, f(s,t)). We may find an equation for the plane tangent to S at
(S0, to, f(S0,t0)) using either the techniques of Section 3.3 (looking at S as the graph
of f) or the techniques of this section (looking at S as a surface parametrized by F').
Verify that these two approaches yield equations for the same plane, both in the special
case when f(s,t) = s2 +t% and (sg,t9) = (1,2), and in the general case.

. Use the chain rule to find the derivative of f og at the point c for each of the following.
(a) f(xvy) = <$2y7$ - y)7 g(S,t) = (3St7 82 - 4t)7 Cc = (17 _2)

(b) f(z,9,2) = (4ay,322), g(5,1) = (st2 at s, it) ¢ =(-2,3)

(C) f(xay) = (31’. +4y,2x2y,x - y)7 g(S,t,U) = (48 — 3t +U,, 5St2)v CcC= (17 _273)
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5. Suppose
xr = f(u7 U)?
= g(u,v),
and
u = h(s,t),
= k(s,t)

(a) Show that
Or Oxrodu OxOv

95~ ouds  owos

and
dr Oz Ou N Ox Ov
ot Oudt  Ovot
(b) Find similar expressions for % and %.
6. Use your results in Problem 5 to find %, %—f, %, and % when
z = u?v,
Yy =3u—wv,
and
u=4t> — 52,
4t
v=—.
S

7. Suppose T is a function of x and y where

x = rcos(h),

y = rsin(6).
Show that oT  ar o7
= 9 cos(6) + i sin(6)
and or  or T
0= 9" sin(f) + a—yr cos(0).

8. Suppose the temperature at a point (x,y) in the plane is given by
20

Vita?+y2

(a) If (r,0) represents the polar coordinates of (z,y), use Problem 7 to find 4L and

aT _ _z
thenr—élandH_G.

(b) Show that %—r‘g = 0 for all values of » and . Can you explain this result geometri-
cally?

T =100 —
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9. Let T be the torus parametrized by

x = (44 2cos(t)) cos(s),
y = (4 + 2cos(t)) sin(s),
z = 2sin(t),

for 0 <s<2mand 0 <t <2r.
(a) If U is a function of z, y, and z, find general expressions for %—g and %—g.
(b) Suppose

U =80 — 40¢~ 70 (@ +v7+27)

gives the temperature at a point (z,y, z) on T. Find expressions for %—g and %—(tf in
this case. What is the geometrical interpretation of these quantities?

(c) Evaluate 2% and 2Y in the particular case s = T and t = Z.



