The Calculus of Functions

$\boldsymbol{o f}$
Several Variables

Section 4.2

Best Affine Approximations

Best affine approximations

The following definitions should look very familiar.
Definition Suppose $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is defined on an open ball containing the point \mathbf{c}. We call an affine function $A: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ the best affine approximation to f at \mathbf{c} if (1) $A(\mathbf{c})=f(\mathbf{c})$ and $(2)\|R(\mathbf{h})\|$ is $o(\mathbf{h})$, where

$$
\begin{equation*}
R(\mathbf{h})=f(\mathbf{c}+\mathbf{h})-A(\mathbf{c}+\mathbf{h}) \tag{4.2.1}
\end{equation*}
$$

Suppose $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is the best affine approximation to f at \mathbf{c}. Then, from our work in Section 1.5, there exists an $n \times m$ matrix M and a vector \mathbf{b} in \mathbb{R}^{n} such that

$$
\begin{equation*}
A(\mathbf{x})=M \mathbf{x}+\mathbf{b} \tag{4.2.2}
\end{equation*}
$$

for all \mathbf{x} in \mathbb{R}^{m}. Moreover, the condition $A(\mathbf{c})=f(\mathbf{c})$ implies $f(\mathbf{c})=M \mathbf{c}+\mathbf{b}$, and so $\mathbf{b}=f(\mathbf{c})-M \mathbf{c}$. Hence we have

$$
\begin{equation*}
A(\mathbf{x})=M \mathbf{x}+f(\mathbf{c})-M \mathbf{c}=M(\mathbf{x}-\mathbf{c})+f(\mathbf{c}) \tag{4.2.3}
\end{equation*}
$$

for all \mathbf{x} in \mathbb{R}^{m}. Thus to find the best affine approximation we need only identify the matrix M in (4.2.3).

Definition Suppose $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is defined on an open ball containing the point \mathbf{c}. If f has a best affine approximation at \mathbf{c}, then we say f is differentiable at \mathbf{c}. Moreover, if the best affine approximation to f at \mathbf{c} is given by

$$
\begin{equation*}
A(\mathbf{x})=M(\mathbf{x}-\mathbf{c})+f(\mathbf{c}) \tag{4.2.4}
\end{equation*}
$$

then we call M the derivative of f at \mathbf{c} and write $D f(\mathbf{c})=M$.
Now suppose $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ and A is an affine function with $A(\mathbf{c})=f(\mathbf{c})$. Let f_{k} and A_{k} be the k th coordinate functions of f and A, respectively, for $k=1,2, \ldots, n$, and let R be the remainder function

$$
\begin{aligned}
R(\mathbf{h}) & =f(\mathbf{c}+\mathbf{h})-A(\mathbf{c}+\mathbf{h}) \\
& =\left(f_{1}(\mathbf{c}+\mathbf{h})-A_{1}(\mathbf{c}+\mathbf{h}), f_{2}(\mathbf{c}+\mathbf{h})-A_{2}(\mathbf{c}+\mathbf{h}), \ldots, f_{n}(\mathbf{c}+\mathbf{h})-A_{n}(\mathbf{c}+\mathbf{h})\right) .
\end{aligned}
$$

Then

$$
\frac{R(\mathbf{h})}{\|\mathbf{h}\|}=\left(\frac{f_{1}(\mathbf{c}+\mathbf{h})-A_{1}(\mathbf{c}+\mathbf{h})}{\|\mathbf{h}\|}, \frac{f_{2}(\mathbf{c}+\mathbf{h})-A_{2}(\mathbf{c}+\mathbf{h})}{\|\mathbf{h}\|}, \ldots, \frac{f_{n}(\mathbf{c}+\mathbf{h})-A_{n}(\mathbf{c}+\mathbf{h})}{\|\mathbf{h}\|}\right)
$$

and so

$$
\begin{equation*}
\lim _{\mathbf{h} \rightarrow \mathbf{0}} \frac{\| R(\mathbf{h} \|}{\|\mathbf{h}\|}=0 \tag{4.2.5}
\end{equation*}
$$

that is, A is the best affine approximation to f at \mathbf{c}, if and only if

$$
\begin{equation*}
\lim _{\mathbf{h} \rightarrow \mathbf{0}} \frac{f_{k}(\mathbf{c}+\mathbf{h})-A_{k}(\mathbf{c}+\mathbf{h})}{\|\mathbf{h}\|}=0 \tag{4.2.6}
\end{equation*}
$$

for $k=1,2, \ldots, n$. But (4.2.6) is the statement that A_{k} is the best affine approximation to f_{k} at \mathbf{c}. In other words, A is the best affine approximation to f at \mathbf{c} if and only if A_{k} is the best affine approximation to f_{k} at \mathbf{c} for $k=1,2, \ldots, n$. This result has many interesting consequences.
Proposition If $f_{k}: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is the k th coordinate function of $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$, then f is differentiable at a point \mathbf{c} if and only if f_{k} is differentiable at \mathbf{c} for $k=1,2, \ldots, n$.
Definition If $f_{k}: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is the k th coordinate function of $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$, then we say f is C^{1} on an open set U if f_{k} is C^{1} on U for $k=1,2, \ldots, n$.

Putting our results in Section 3.3 together with the previous proposition and definition, we have the following basic result.
Theorem If $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is C^{1} on an open ball containing the point \mathbf{c}, then f is differentiable at \mathbf{c}.

Suppose $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is differentiable at $\mathbf{c}=\left(c_{1}, c_{2}, \ldots, c_{m}\right)$ with best affine approximation A and $f_{k}: \mathbb{R}^{m} \rightarrow \mathbb{R}$ and $A_{k}: \mathbb{R}^{m} \rightarrow \mathbb{R}$ are the coordinate functions of f and A, respectively, for $k=1,2, \ldots, n$. Since A_{k} is the best affine approximation to f_{k} at \mathbf{c}, we know from Section 3.3 that

$$
\begin{equation*}
A_{k}(\mathbf{x})=\nabla f_{k}(\mathbf{c}) \cdot(\mathbf{x}-\mathbf{c})+f_{k}(\mathbf{c}) \tag{4.2.7}
\end{equation*}
$$

for all \mathbf{x} in \mathbb{R}^{m}. Hence, writing the vectors as column vectors, we have

$$
\begin{aligned}
A(\mathbf{x}) & =\left[\begin{array}{c}
A_{1}(\mathbf{x}) \\
A_{2}(\mathbf{x}) \\
\vdots \\
A_{n}(\mathbf{x})
\end{array}\right] \\
& =\left[\begin{array}{c}
\nabla f_{1}(\mathbf{c}) \cdot(\mathbf{x}-\mathbf{c})+f_{1}(\mathbf{c}) \\
\nabla f_{2}(\mathbf{c}) \cdot(\mathbf{x}-\mathbf{c})+f_{2}(\mathbf{c}) \\
\vdots \\
\nabla f_{n}(\mathbf{c}) \cdot(\mathbf{x}-\mathbf{c})+f_{n}(\mathbf{c})
\end{array}\right]
\end{aligned}
$$

$$
=\left[\begin{array}{cccc}
\frac{\partial}{\partial x_{1}} f_{1}(\mathbf{c}) & \frac{\partial}{\partial x_{2}} f_{1}(\mathbf{c}) & \cdots & \frac{\partial}{x_{m}} f_{1}(\mathbf{c}) \tag{4.2.8}\\
\frac{\partial}{\partial x_{1}} f_{2}(\mathbf{c}) & \frac{\partial}{\partial x_{2}} f_{2}(\mathbf{c}) & \cdots & \frac{\partial}{x_{m}} f_{2}(\mathbf{c}) \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial}{\partial x_{1}} f_{n}(\mathbf{c}) & \frac{\partial}{\partial x_{2}} f_{n}(\mathbf{c}) & \cdots & \frac{\partial}{x_{m}} f_{n}(\mathbf{c})
\end{array}\right]\left[\begin{array}{c}
x_{1}-c_{1} \\
x_{2}-c_{2} \\
\vdots \\
x_{m}-c_{m}
\end{array}\right]+\left[\begin{array}{c}
f_{1}(\mathbf{c}) \\
f_{2}(\mathbf{c}) \\
\vdots \\
f_{m}(\mathbf{c})
\end{array}\right]
$$

It follows that the $n \times m$ matrix in (4.2.8) is the derivative of f.
Theorem If $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is differentiable at a point \mathbf{c}, then the derivative of f at \mathbf{c} is given by

$$
D f(\mathbf{c})=\left[\begin{array}{cccc}
\frac{\partial}{\partial x_{1}} f_{1}(\mathbf{c}) & \frac{\partial}{\partial x_{2}} f_{1}(\mathbf{c}) & \cdots & \frac{\partial}{x_{m}} f_{1}(\mathbf{c}) \tag{4.2.9}\\
\frac{\partial}{\partial x_{1}} f_{2}(\mathbf{c}) & \frac{\partial}{\partial x_{2}} f_{2}(\mathbf{c}) & \cdots & \frac{\partial}{x_{m}} f_{2}(\mathbf{c}) \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial}{\partial x_{1}} f_{n}(\mathbf{c}) & \frac{\partial}{\partial x_{2}} f_{n}(\mathbf{c}) & \cdots & \frac{\partial}{x_{m}} f_{n}(\mathbf{c})
\end{array}\right] .
$$

We call the matrix in (4.2.9) the Jacobian matrix of f, after the German mathematician Carl Gustav Jacob Jacobi (1804-1851). Note that we have seen this matrix before in our discussion of change of variables in integrals in Section 3.7.
Example Consider the function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ defined by

$$
f(x, y, z)=(x y z, 3 x-2 y z)
$$

The coordinate functions of f are

$$
f_{1}(x, y, z)=x y z
$$

and

$$
f_{2}(x, y, z)=3 x-2 y z
$$

Now

$$
\nabla f_{1}(x, y, z)=(y z, x z, x y)
$$

and

$$
\nabla f_{2}(x, y, z)=(3,-2 z,-2 y)
$$

so the Jacobian of f is

$$
D f(x, y, z)=\left[\begin{array}{ccc}
y z & x z & x y \\
3 & -2 z & -2 y
\end{array}\right]
$$

Hence, for example,

$$
D f(1,2,-1)=\left[\begin{array}{rrr}
-2 & -1 & 2 \\
3 & 2 & -4
\end{array}\right]
$$

Since $f(1,2,-1)=(-2,7)$, the best affine approximation to f at $(1,2,-1)$ is

$$
\begin{aligned}
A(x, y, z) & =\left[\begin{array}{rrr}
-2 & -1 & 2 \\
3 & 2 & -4
\end{array}\right]\left[\begin{array}{l}
x-1 \\
y-2 \\
z+1
\end{array}\right]+\left[\begin{array}{r}
-2 \\
7
\end{array}\right] \\
& =\left[\begin{array}{c}
-2(x-1)-(y-2)+2(z+1)-2 \\
3(x-1)+2(y-2)-4(z+1)+7
\end{array}\right] \\
& =\left[\begin{array}{c}
-2 x-y+2 z+4 \\
3 x+2 y-4 z-4
\end{array}\right] .
\end{aligned}
$$

Tangent planes

Suppose $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ parametrizes a surface S in \mathbb{R}^{3}. If f_{1}, f_{2}, and f_{3} are the coordinate functions of f, then the best affine approximation to f at a point $\left(s_{0}, t_{0}\right)$ is given by

$$
\begin{align*}
A(s, t) & =\left[\begin{array}{ll}
\frac{\partial}{\partial s} f_{1}\left(t_{0}, s_{0}\right) & \frac{\partial}{\partial t} f_{1}\left(t_{0}, s_{0}\right) \\
\frac{\partial}{\partial s} f_{2}\left(t_{0}, s_{0}\right) & \frac{\partial}{\partial t} f_{2}\left(t_{0}, s_{0}\right) \\
\frac{\partial}{\partial s} f_{3}\left(t_{0}, s_{0}\right) & \frac{\partial}{\partial t} f_{3}\left(t_{0}, s_{0}\right)
\end{array}\right]\left[\begin{array}{l}
s-s_{0} \\
t-t_{0}
\end{array}\right]+\left[\begin{array}{l}
f_{1}\left(s_{0}, t_{0}\right) \\
f_{2}\left(s_{0}, t_{0}\right) \\
f_{3}\left(s_{0}, t_{0}\right)
\end{array}\right] \\
& =\left[\begin{array}{l}
\frac{\partial}{\partial s} f_{1}\left(s_{0}, t_{0}\right) \\
\frac{\partial}{\partial s} f_{2}\left(s_{0}, t_{0}\right) \\
\frac{\partial}{\partial s} f_{3}\left(s_{0}, t_{0}\right)
\end{array}\right]\left(s-s_{0}\right)+\left[\begin{array}{l}
\frac{\partial}{\partial t} f_{1}\left(s_{0}, t_{0}\right) \\
\frac{\partial}{\partial t} f_{2}\left(s_{0}, t_{0}\right) \\
\frac{\partial}{\partial t} f_{3}\left(s_{0}, t_{0}\right)
\end{array}\right]\left(t-t_{0}\right)+\left[\begin{array}{l}
f_{1}\left(s_{0}, t_{0}\right) \\
f_{2}\left(s_{0}, t_{0}\right) \\
f_{3}\left(s_{0}, t_{0}\right)
\end{array}\right] \tag{4.2.10}
\end{align*}
$$

If the vectors

$$
\mathbf{v}=\left[\begin{array}{c}
\frac{\partial}{\partial s} f_{1}\left(s_{0}, t_{0}\right) \tag{4.2.11}\\
\frac{\partial}{\partial s} f_{2}\left(s_{0}, t_{0}\right) \\
\frac{\partial}{\partial s} f_{3}\left(s_{0}, t_{0}\right)
\end{array}\right]
$$

and

$$
\mathbf{w}=\left[\begin{array}{c}
\frac{\partial}{\partial t} f_{1}\left(s_{0}, t_{0}\right) \tag{4.2.12}\\
\frac{\partial}{\partial t} f_{2}\left(s_{0}, t_{0}\right) \\
\frac{\partial}{\partial t} f_{3}\left(s_{0}, t_{0}\right)
\end{array}\right]
$$

are linearly independent, then (4.2.10) implies that the image of A is a plane in \mathbb{R}^{3} which passes through the point $f\left(s_{0}, t_{0}\right)$ on the surface S. Moreover, if we let C_{1} be the curve
on S through the point $f\left(s_{0}, t_{0}\right)$ parametrized by $\varphi_{1}(s)=f\left(s, t_{0}\right)$ and C_{2} be the curve on S through the point $f\left(s_{0}, t_{0}\right)$ parametrized by $\varphi_{2}(t)=f\left(s_{0}, t\right)$, then \mathbf{v} is tangent to C_{1} at $f\left(s_{0}, t_{0}\right)$ and \mathbf{w} is tangent to C_{2} at $f\left(s_{0}, t_{0}\right)$. Hence we call the image of A the tangent plane to the surface S at the point $f\left(s_{0}, t_{0}\right)$.
Example Let T be the torus parametrized by

$$
f(s, t)=((3+\cos (t)) \cos (s),(3+\cos (t)) \sin (s), \sin (t))
$$

for $0 \leq s \leq 2 \pi$ and $0 \leq t \leq 2 \pi$. Then

$$
D f(s, t)=\left[\begin{array}{cc}
-(3+\cos (t)) \sin (s) & -\sin (t) \cos (s) \\
(3+\cos (t)) \cos (s) & -\sin (t) \sin (s) \\
0 & \cos (t)
\end{array}\right]
$$

Thus, for example,

$$
D f\left(\frac{\pi}{2}, \frac{\pi}{4}\right)=\left[\begin{array}{cc}
-\left(3+\frac{1}{\sqrt{2}}\right) & 0 \\
0 & -\frac{1}{\sqrt{2}} \\
0 & \frac{1}{\sqrt{2}}
\end{array}\right]
$$

Since

$$
f\left(\frac{\pi}{2}, \frac{\pi}{4}\right)=\left(0,3+\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)
$$

the best affine approximation to f at $\left(\frac{\pi}{2}, \frac{\pi}{4}\right)$ is

$$
\begin{aligned}
A(s, t) & =\left[\begin{array}{cc}
-\left(3+\frac{1}{\sqrt{2}}\right) & 0 \\
0 & -\frac{1}{\sqrt{2}} \\
0 & \frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{c}
s-\frac{\pi}{2} \\
t-\frac{\pi}{4}
\end{array}\right]+\left[\begin{array}{c}
0 \\
3+\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right] \\
& =\left[\begin{array}{c}
-\left(3+\frac{1}{\sqrt{2}}\right) \\
0 \\
0
\end{array}\right]\left(s-\frac{\pi}{2}\right)+\left[\begin{array}{c}
0 \\
-\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]\left(t-\frac{\pi}{4}\right)+\left[\begin{array}{c}
0 \\
3+\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right] .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& x=-\left(3+\frac{1}{\sqrt{2}}\right)\left(s-\frac{\pi}{2}\right) \\
& y=-\frac{1}{\sqrt{2}}\left(t-\frac{\pi}{4}\right)+3+\frac{1}{\sqrt{2}} \\
& z=\frac{1}{\sqrt{2}}\left(t-\frac{\pi}{4}\right)+\frac{1}{\sqrt{2}}
\end{aligned}
$$

Figure 4.2.1 Torus with a tangent plane
are parametric equations for the plane P tangent to T at $\left(0,3+\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$. See Figure 4.2.1.

Chain rule

We are now in a position to state the chain rule in its most general form. Consider functions $g: \mathbb{R}^{m} \rightarrow \mathbb{R}^{q}$ and $f: \mathbb{R}^{q} \rightarrow \mathbb{R}^{n}$ and suppose g is differentiable at \mathbf{c} and f is differentiable at $g(\mathbf{c})$. Let $h: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be the composition $h(\mathbf{x})=f(g(\mathbf{x}))$ and denote the coordinate functions of f, g, and h by $f_{i}, i=1,2, \ldots, n, g_{j}, j=1,2 \ldots, q$, and $h_{k}, k=1,2, \ldots, n$, respectively. Then, for $k=1,2, \ldots, n$,

$$
h_{k}\left(x_{1}, x_{2}, \ldots, x_{m}\right)=f_{k}\left(g_{1}\left(x_{1}, x_{2}, \ldots, x_{m}\right), g_{2}\left(x_{1}, x_{2}, \ldots, x_{m}\right), \ldots, g_{q}\left(x_{1}, x_{2}, \ldots, x_{m}\right)\right)
$$

Now if we fix $m-1$ of the variables $x_{1}, x_{2}, \ldots, x_{m}$, say, all but x_{j}, then h_{k} is the composition of a function from \mathbb{R} to \mathbb{R}^{q} with a function from \mathbb{R}^{q} to \mathbb{R}. Thus we may use the chain rule from Section 3.3 to compute $\frac{\partial}{\partial x_{j}} h_{k}(\mathbf{c})$, namely,

$$
\begin{gather*}
\frac{\partial}{\partial x_{j}} h_{k}(\mathbf{c})=\nabla f_{k}(g(\mathbf{c})) \cdot\left(\frac{\partial}{\partial x_{j}} g_{1}(\mathbf{c}), \frac{\partial}{\partial x_{j}} g_{2}(\mathbf{c}), \ldots, \frac{\partial}{x_{j}} g_{q}(\mathbf{c})\right) \\
=\frac{\partial}{\partial x_{1}} f_{k}(g(\mathbf{c})) \frac{\partial}{\partial x_{j}} g_{1}(\mathbf{c})+\frac{\partial}{\partial x_{2}} f_{k}(g(\mathbf{c})) \frac{\partial}{\partial x_{j}} g_{2}(\mathbf{c})+ \tag{4.2.13}\\
\cdots+\frac{\partial}{\partial x_{q}} f_{k}(g(\mathbf{c})) \frac{\partial}{\partial x_{j}} g_{q}(\mathbf{c}) .
\end{gather*}
$$

Hence $\frac{\partial}{\partial x_{j}} h_{k}(\mathbf{c})$ is equal to the dot product of the k th row of $D f(g(\mathbf{c}))$ with the j th column of $D g(\mathbf{c})$. Moreover, if g is C^{1} on an open ball about \mathbf{c} and f is C^{1} on an open ball about $g(\mathbf{c})$, then (4.2.13) shows that $\frac{\partial}{\partial x_{j}} h_{k}$ is continuous on an open ball about \mathbf{c}. It follows from our results in Section 3.3 that h is differentiable at c. Since $\frac{\partial}{\partial x_{j}} h_{k}$ is the entry in the k th row and j th column of $D h(\mathbf{c}),(4.2 .13)$ implies $D h(\mathbf{c})=D f(g(\mathbf{c})) D g(\mathbf{c})$. This result, the chain rule, may be proven without assuming that f and g are both C^{1}, and so we state the more general result in the following theorem.

Chain Rule If $g: \mathbb{R}^{m} \rightarrow \mathbb{R}^{q}$ is differentiable at \mathbf{c} and $f: \mathbb{R}^{q} \rightarrow \mathbb{R}^{n}$ is differentiable at $g(\mathbf{c})$, then $f \circ g$ is differentiable at \mathbf{c} and

$$
\begin{equation*}
D(f \circ g)(\mathbf{c})=D f(g(\mathbf{c})) D g(\mathbf{c}) \tag{4.2.14}
\end{equation*}
$$

Equivalently, the chain rule says that if A is the best affine approximation to g at \mathbf{c} and B is the best affine approximation to f at $g(\mathbf{c})$, then $B \circ A$ is the best affine approximation to $f \circ g$ at \mathbf{c}. That is, the best affine approximation to a composition of functions is the composition of the individual best affine approximations.

Example Suppose $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is defined by

$$
g(s, t)=(\cos (s) \sin (t), \sin (s) \sin (t), \cos (t))
$$

and $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ is defined by

$$
f(x, y, z)=\left(10 x y z, x^{2}-y z\right) .
$$

Then

$$
D g(s, t)=\left[\begin{array}{cc}
-\sin (s) \sin (t) & \cos (s) \cos (t) \\
\cos (s) \sin (t) & \sin (s) \cos (t) \\
0 & -\sin (t)
\end{array}\right]
$$

and

$$
D f(x, y, z)=\left[\begin{array}{ccc}
10 y z & 10 x z & 10 x y \\
2 x & -z & -y
\end{array}\right]
$$

Let $h(s, t)=f(g(s, t))$. To find $D h\left(\frac{\pi}{4}, \frac{\pi}{4}\right)$, we first note that

$$
\begin{aligned}
g\left(\frac{\pi}{4}, \frac{\pi}{4}\right)= & \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{\sqrt{2}}\right) \\
D g\left(\frac{\pi}{4}, \frac{\pi}{4}\right) & =\left[\begin{array}{rr}
-\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} \\
0 & -\frac{1}{\sqrt{2}}
\end{array}\right]
\end{aligned}
$$

and

$$
D f\left(g\left(\frac{\pi}{4}, \frac{\pi}{4}\right)\right)=D f\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{\sqrt{2}}\right)=\left[\begin{array}{ccc}
\frac{5}{\sqrt{2}} & \frac{5}{\sqrt{2}} & \frac{5}{2} \\
1 & -\frac{1}{\sqrt{2}} & -\frac{1}{2}
\end{array}\right]
$$

Thus

$$
\begin{aligned}
D h\left(\frac{\pi}{4}, \frac{\pi}{4}\right) & =\operatorname{Df}\left(g\left(\frac{\pi}{4}, \frac{\pi}{4}\right)\right) D g\left(\frac{\pi}{4}, \frac{\pi}{4}\right) \\
& =\left[\begin{array}{ccc}
\frac{5}{\sqrt{2}} & \frac{5}{\sqrt{2}} & \frac{5}{2} \\
1 & -\frac{1}{\sqrt{2}} & -\frac{1}{2}
\end{array}\right]\left[\begin{array}{rr}
-\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} \\
0 & -\frac{1}{\sqrt{2}}
\end{array}\right] \\
& =\left[\begin{array}{cc}
0 & \frac{5}{2 \sqrt{2}} \\
-\frac{1+\sqrt{2}}{2 \sqrt{2}} & \frac{1}{2}
\end{array}\right] .
\end{aligned}
$$

Problems

1. Find the best affine approximation for each of the following functions at the specified point \mathbf{c}.
(a) $f(x, y)=\left(x^{2}+y^{2}, 3 x y\right), \mathbf{c}=(1,2)$
(b) $g(x, y, z)=(\sin (x+y+z), x y \cos (z)), \mathbf{c}=\left(0, \frac{\pi}{4}, \frac{\pi}{4}\right)$
(c) $h(s, t)=\left(3 s^{2}+t, s-t, 4 s t^{2}, 4 t-s\right), \mathbf{c}=(-1,3)$
2. Each of the following functions parametrizes a surface S in \mathbb{R}^{3}. In each case, find parametric equations for the tangent plane P passing through the point $f\left(s_{0}, t_{0}\right)$. Plot S and P together.
(a) $f(s, t)=(t \cos (s), t \sin (s), t),\left(s_{0}, t_{0}\right)=\left(\frac{\pi}{2}, 2\right)$
(b) $f(s, t)=\left(t^{2} \cos (s), t^{2}, t^{2} \sin (s)\right),\left(s_{0}, t_{0}\right)=(0,1)$
(c) $f(s, t)=(\cos (s) \sin (t), \sin (s) \sin (t), \cos (t)),\left(s_{0}, t_{0}\right)=\left(\frac{\pi}{2}, \frac{\pi}{4}\right)$
(d) $f(s, t)=(3 \cos (s) \sin (t), \sin (s) \sin (t), 2 \cos (t)),\left(s_{0}, t_{0}\right)=\left(\frac{\pi}{4}, \frac{\pi}{4}\right)$
(e) $f(s, t)=((4+2 \cos (t)) \cos (s),(4+2 \cos (t)) \sin (s), 2 \sin (t)),\left(s_{0}, t_{0}\right)=\left(\frac{3 \pi}{4}, \frac{\pi}{4}\right)$
3. Let S be the graph of a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$. Define the function $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ by $F(s, t)=(s, t, f(s, t))$. We may find an equation for the plane tangent to S at $\left(s_{0}, t_{0}, f\left(s_{0}, t_{0}\right)\right)$ using either the techniques of Section 3.3 (looking at S as the graph of f) or the techniques of this section (looking at S as a surface parametrized by F). Verify that these two approaches yield equations for the same plane, both in the special case when $f(s, t)=s^{2}+t^{2}$ and $\left(s_{0}, t_{0}\right)=(1,2)$, and in the general case.
4. Use the chain rule to find the derivative of $f \circ g$ at the point \mathbf{c} for each of the following.
(a) $f(x, y)=\left(x^{2} y, x-y\right), g(s, t)=\left(3 s t, s^{2}-4 t\right), \mathbf{c}=(1,-2)$
(b) $f(x, y, z)=(4 x y, 3 x z), g(s, t)=\left(s t^{2}-4 t, s^{2}, \frac{4}{s t}\right), \mathbf{c}=(-2,3)$
(c) $f(x, y)=\left(3 x+4 y, 2 x^{2} y, x-y\right), g(s, t, u)=\left(4 s-3 t+u, 5 s t^{2}\right), \mathbf{c}=(1,-2,3)$
5. Suppose

$$
\begin{aligned}
& x=f(u, v) \\
& y=g(u, v)
\end{aligned}
$$

and

$$
\begin{aligned}
& u=h(s, t) \\
& v=k(s, t)
\end{aligned}
$$

(a) Show that

$$
\frac{\partial x}{\partial s}=\frac{\partial x}{\partial u} \frac{\partial u}{\partial s}+\frac{\partial x}{\partial v} \frac{\partial v}{\partial s}
$$

and

$$
\frac{\partial x}{\partial t}=\frac{\partial x}{\partial u} \frac{\partial u}{\partial t}+\frac{\partial x}{\partial v} \frac{\partial v}{\partial t}
$$

(b) Find similar expressions for $\frac{\partial y}{\partial s}$ and $\frac{\partial y}{\partial t}$.
6. Use your results in Problem 5 to find $\frac{\partial x}{\partial s}, \frac{\partial x}{\partial t}, \frac{\partial y}{\partial s}$, and $\frac{\partial y}{\partial t}$ when

$$
\begin{aligned}
& x=u^{2} v \\
& y=3 u-v
\end{aligned}
$$

and

$$
\begin{aligned}
u & =4 t^{2}-s^{2} \\
v & =\frac{4 t}{s}
\end{aligned}
$$

7. Suppose T is a function of x and y where

$$
\begin{aligned}
x & =r \cos (\theta) \\
y & =r \sin (\theta)
\end{aligned}
$$

Show that

$$
\frac{\partial T}{\partial r}=\frac{\partial T}{\partial x} \cos (\theta)+\frac{\partial T}{\partial y} \sin (\theta)
$$

and

$$
\frac{\partial T}{\partial \theta}=-\frac{\partial T}{\partial x} r \sin (\theta)+\frac{\partial T}{\partial y} r \cos (\theta)
$$

8. Suppose the temperature at a point (x, y) in the plane is given by

$$
T=100-\frac{20}{\sqrt{1+x^{2}+y^{2}}}
$$

(a) If (r, θ) represents the polar coordinates of (x, y), use Problem 7 to find $\frac{\partial T}{\partial r}$ and $\frac{\partial T}{\partial \theta}$ when $r=4$ and $\theta=\frac{\pi}{6}$.
(b) Show that $\frac{\partial T}{\partial \theta}=0$ for all values of r and θ. Can you explain this result geometrically?
9. Let T be the torus parametrized by

$$
\begin{aligned}
& x=(4+2 \cos (t)) \cos (s), \\
& y=(4+2 \cos (t)) \sin (s), \\
& z=2 \sin (t),
\end{aligned}
$$

for $0 \leq s \leq 2 \pi$ and $0 \leq t \leq 2 \pi$.
(a) If U is a function of x, y, and z, find general expressions for $\frac{\partial U}{\partial s}$ and $\frac{\partial U}{\partial t}$.
(b) Suppose

$$
U=80-40 e^{-\frac{1}{20}\left(x^{2}+y^{2}+z^{2}\right)}
$$

gives the temperature at a point (x, y, z) on T. Find expressions for $\frac{\partial U}{\partial s}$ and $\frac{\partial U}{\partial t}$ in this case. What is the geometrical interpretation of these quantities?
(c) Evaluate $\frac{\partial U}{\partial s}$ and $\frac{\partial U}{\partial t}$ in the particular case $s=\frac{\pi}{4}$ and $t=\frac{\pi}{4}$.

