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Best Affine Approximations

Best affine approximations

The following definitions should look very familiar.

Definition Suppose f : Rm → Rn is defined on an open ball containing the point c.
We call an affine function A : Rm → Rn the best affine approximation to f at c if (1)
A(c) = f(c) and (2) ‖R(h)‖ is o(h), where

R(h) = f(c + h)−A(c + h). (4.2.1)

Suppose A : Rn → Rn is the best affine approximation to f at c. Then, from our work
in Section 1.5, there exists an n×m matrix M and a vector b in Rn such that

A(x) = Mx + b (4.2.2)

for all x in Rm. Moreover, the condition A(c) = f(c) implies f(c) = Mc + b, and so
b = f(c)−Mc. Hence we have

A(x) = Mx + f(c)−Mc = M(x− c) + f(c) (4.2.3)

for all x in Rm. Thus to find the best affine approximation we need only identify the
matrix M in (4.2.3).

Definition Suppose f : Rm → Rn is defined on an open ball containing the point c. If
f has a best affine approximation at c, then we say f is differentiable at c. Moreover, if
the best affine approximation to f at c is given by

A(x) = M(x− c) + f(c), (4.2.4)

then we call M the derivative of f at c and write Df(c) = M .

Now suppose f : Rm → Rn and A is an affine function with A(c) = f(c). Let fk and
Ak be the kth coordinate functions of f and A, respectively, for k = 1, 2, . . . , n, and let R
be the remainder function

R(h) = f(c + h)−A(c + h)
= (f1(c + h)−A1(c + h), f2(c + h)−A2(c + h), . . . , fn(c + h)−An(c + h)).
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Then

R(h)
‖h‖

=
(
f1(c + h)−A1(c + h)

‖h‖
,
f2(c + h)−A2(c + h)

‖h‖
, . . . ,

fn(c + h)−An(c + h)
‖h‖

)
,

and so

lim
h→0

‖R(h‖
‖h‖

= 0, (4.2.5)

that is, A is the best affine approximation to f at c, if and only if

lim
h→0

fk(c + h)−Ak(c + h)
‖h‖

= 0 (4.2.6)

for k = 1, 2, . . . , n. But (4.2.6) is the statement that Ak is the best affine approximation to
fk at c. In other words, A is the best affine approximation to f at c if and only if Ak is the
best affine approximation to fk at c for k = 1, 2, . . . , n. This result has many interesting
consequences.

Proposition If fk : Rm → R is the kth coordinate function of f : Rm → Rn, then f is
differentiable at a point c if and only if fk is differentiable at c for k = 1, 2, . . . , n.

Definition If fk : Rm → R is the kth coordinate function of f : Rm → Rn, then we say
f is C1 on an open set U if fk is C1 on U for k = 1, 2, . . . , n.

Putting our results in Section 3.3 together with the previous proposition and definition,
we have the following basic result.

Theorem If f : Rm → Rn is C1 on an open ball containing the point c, then f is
differentiable at c.

Suppose f : Rm → Rn is differentiable at c = (c1, c2, . . . , cm) with best affine approxi-
mation A and fk : Rm → R and Ak : Rm → R are the coordinate functions of f and A,
respectively, for k = 1, 2, . . . , n. Since Ak is the best affine approximation to fk at c, we
know from Section 3.3 that

Ak(x) = ∇fk(c) · (x− c) + fk(c) (4.2.7)

for all x in Rm. Hence, writing the vectors as column vectors, we have

A(x) =


A1(x)
A2(x)

...
An(x)



=


∇f1(c) · (x− c) + f1(c)

∇f2(c) · (x− c) + f2(c)
...

∇fn(c) · (x− c) + fn(c)


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=



∂

∂x1
f1(c)

∂

∂x2
f1(c) · · · ∂

xm
f1(c)

∂

∂x1
f2(c)

∂

∂x2
f2(c) · · · ∂

xm
f2(c)

...
...

. . .
...

∂

∂x1
fn(c)

∂

∂x2
fn(c) · · · ∂

xm
fn(c)




x1 − c1
x2 − c2

...
xm − cm

+


f1(c)
f2(c)

...
fm(c)

 . (4.2.8)

It follows that the n×m matrix in (4.2.8) is the derivative of f .

Theorem If f : Rm → Rn is differentiable at a point c, then the derivative of f at c is
given by

Df(c) =



∂

∂x1
f1(c)

∂

∂x2
f1(c) · · · ∂

xm
f1(c)

∂

∂x1
f2(c)

∂

∂x2
f2(c) · · · ∂

xm
f2(c)

...
...

. . .
...

∂

∂x1
fn(c)

∂

∂x2
fn(c) · · · ∂

xm
fn(c)


. (4.2.9)

We call the matrix in (4.2.9) the Jacobian matrix of f , after the German mathematician
Carl Gustav Jacob Jacobi (1804-1851). Note that we have seen this matrix before in our
discussion of change of variables in integrals in Section 3.7.

Example Consider the function f : R3 → R2 defined by

f(x, y, z) = (xyz, 3x− 2yz).

The coordinate functions of f are

f1(x, y, z) = xyz

and
f2(x, y, z) = 3x− 2yz.

Now
∇f1(x, y, z) = (yz, xz, xy)

and
∇f2(x, y, z) = (3,−2z,−2y),

so the Jacobian of f is

Df(x, y, z) =
[
yz xz xy
3 −2z −2y

]
.

Hence, for example,

Df(1, 2,−1) =
[
−2 −1 2

3 2 −4

]
.
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Since f(1, 2,−1) = (−2, 7), the best affine approximation to f at (1, 2,−1) is

A(x, y, z) =
[
−2 −1 2

3 2 −4

]x− 1
y − 2
z + 1

+
[
−2

7

]

=
[
−2(x− 1)− (y − 2) + 2(z + 1)− 2
3(x− 1) + 2(y − 2)− 4(z + 1) + 7

]
=
[
−2x− y + 2z + 4
3x+ 2y − 4z − 4

]
.

Tangent planes
Suppose f : R2 → R3 parametrizes a surface S in R3. If f1, f2, and f3 are the coordinate
functions of f , then the best affine approximation to f at a point (s0, t0) is given by

A(s, t) =



∂

∂s
f1(t0, s0)

∂

∂t
f1(t0, s0)

∂

∂s
f2(t0, s0)

∂

∂t
f2(t0, s0)

∂

∂s
f3(t0, s0)

∂

∂t
f3(t0, s0)


[
s− s0
t− t0

]
+

 f1(s0, t0)
f2(s0, t0)
f3(s0, t0)



=



∂

∂s
f1(s0, t0)

∂

∂s
f2(s0, t0)

∂

∂s
f3(s0, t0)

 (s− s0) +



∂

∂t
f1(s0, t0)

∂

∂t
f2(s0, t0)

∂

∂t
f3(s0, t0)

 (t− t0) +

 f1(s0, t0)
f2(s0, t0)
f3(s0, t0)

 .(4.2.10)

If the vectors

v =



∂

∂s
f1(s0, t0)

∂

∂s
f2(s0, t0)

∂

∂s
f3(s0, t0)

 (4.2.11)

and

w =



∂

∂t
f1(s0, t0)

∂

∂t
f2(s0, t0)

∂

∂t
f3(s0, t0)

 (4.2.12)

are linearly independent, then (4.2.10) implies that the image of A is a plane in R3 which
passes through the point f(s0, t0) on the surface S. Moreover, if we let C1 be the curve
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on S through the point f(s0, t0) parametrized by ϕ1(s) = f(s, t0) and C2 be the curve on
S through the point f(s0, t0) parametrized by ϕ2(t) = f(s0, t), then v is tangent to C1 at
f(s0, t0) and w is tangent to C2 at f(s0, t0). Hence we call the image of A the tangent
plane to the surface S at the point f(s0, t0).

Example Let T be the torus parametrized by

f(s, t) = ((3 + cos(t)) cos(s), (3 + cos(t)) sin(s), sin(t))

for 0 ≤ s ≤ 2π and 0 ≤ t ≤ 2π. Then

Df(s, t) =

−(3 + cos(t)) sin(s) − sin(t) cos(s)
(3 + cos(t)) cos(s) − sin(t) sin(s)

0 cos(t)

 .
Thus, for example,

Df
(π

2
,
π

4

)
=


−
(

3 +
1√
2

)
0

0 − 1√
2

0
1√
2

 .
Since

f
(π

2
,
π

4

)
=
(

0, 3 +
1√
2
,

1√
2

)
,

the best affine approximation to f at
(
π
2 ,

π
4

)
is

A(s, t) =


−
(

3 +
1√
2

)
0

0 − 1√
2

0
1√
2


 s− π

2

t− π

4

+


0

3 +
1√
2

1√
2



=

−
(

3 +
1√
2

)
0
0

(s− π

2

)
+


0

− 1√
2

1√
2

(t− π

4

)
+


0

3 +
1√
2

1√
2

 .
Hence

x = −
(

3 +
1√
2

)(
s− π

2

)
,

y = − 1√
2

(
t− π

4

)
+ 3 +

1√
2
,

z =
1√
2

(
t− π

4

)
+

1√
2
,
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Figure 4.2.1 Torus with a tangent plane

are parametric equations for the plane P tangent to T at
(

0, 3 + 1√
2
, 1√

2

)
. See Figure

4.2.1.

Chain rule
We are now in a position to state the chain rule in its most general form. Consider functions
g : Rm → Rq and f : Rq → Rn and suppose g is differentiable at c and f is differentiable
at g(c). Let h : Rm → Rn be the composition h(x) = f(g(x)) and denote the coordinate
functions of f , g, and h by fi, i = 1, 2, . . . , n, gj , j = 1, 2 . . . , q, and hk, k = 1, 2, . . . , n,
respectively. Then, for k = 1, 2, . . . , n,

hk(x1, x2, . . . , xm) = fk(g1(x1, x2, . . . , xm), g2(x1, x2, . . . , xm), . . . , gq(x1, x2, . . . , xm)).

Now if we fix m − 1 of the variables x1, x2, . . . , xm, say, all but xj , then hk is the
composition of a function from R to Rq with a function from Rq to R. Thus we may use
the chain rule from Section 3.3 to compute ∂

∂xj
hk(c), namely,

∂

∂xj
hk(c) = ∇fk(g(c)) ·

(
∂

∂xj
g1(c),

∂

∂xj
g2(c), . . . ,

∂

xj
gq(c)

)
=

∂

∂x1
fk(g(c))

∂

∂xj
g1(c) +

∂

∂x2
fk(g(c))

∂

∂xj
g2(c)+

· · ·+ ∂

∂xq
fk(g(c))

∂

∂xj
gq(c).

(4.2.13)

Hence ∂
∂xj

hk(c) is equal to the dot product of the kth row of Df(g(c)) with the jth column
of Dg(c). Moreover, if g is C1 on an open ball about c and f is C1 on an open ball about
g(c), then (4.2.13) shows that ∂

∂xj
hk is continuous on an open ball about c. It follows from

our results in Section 3.3 that h is differentiable at c. Since ∂
∂xj

hk is the entry in the kth
row and jth column of Dh(c), (4.2.13) implies Dh(c) = Df(g(c))Dg(c). This result, the
chain rule, may be proven without assuming that f and g are both C1, and so we state
the more general result in the following theorem.
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Chain Rule If g : Rm → Rq is differentiable at c and f : Rq → Rn is differentiable at
g(c), then f ◦ g is differentiable at c and

D(f ◦ g)(c) = Df(g(c))Dg(c). (4.2.14)

Equivalently, the chain rule says that if A is the best affine approximation to g at c and
B is the best affine approximation to f at g(c), then B ◦A is the best affine approximation
to f ◦ g at c. That is, the best affine approximation to a composition of functions is the
composition of the individual best affine approximations.

Example Suppose g : R2 → R3 is defined by

g(s, t) = (cos(s) sin(t), sin(s) sin(t), cos(t))

and f : R3 → R2 is defined by

f(x, y, z) = (10xyz, x2 − yz).

Then

Dg(s, t) =

− sin(s) sin(t) cos(s) cos(t)
cos(s) sin(t) sin(s) cos(t)

0 − sin(t)


and

Df(x, y, z) =
[

10yz 10xz 10xy
2x −z −y

]
.

Let h(s, t) = f(g(s, t)). To find Dh
(
π
4 ,

π
4

)
, we first note that

g
(π

4
,
π

4

)
=
(

1
2
,

1
2
,

1√
2

)
,

Dg
(π

4
,
π

4

)
=


−1

2
1
2

1
2

1
2

0 − 1√
2


and

Df
(
g
(π

4
,
π

4

))
= Df

(
1
2
,

1
2
,

1√
2

)
=


5√
2

5√
2

5
2

1 − 1√
2
−1

2

 .
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Thus
Dh

(π
4
,
π

4

)
= Df

(
g
(π

4
,
π

4

))
Dg
(π

4
,
π

4

)

=


5√
2

5√
2

5
2

1 − 1√
2
−1

2



−1

2
1
2

1
2

1
2

0 − 1√
2



=


0

5
2
√

2

−1 +
√

2
2
√

2
1
2

 .

Problems

1. Find the best affine approximation for each of the following functions at the specified
point c.
(a) f(x, y) = (x2 + y2, 3xy), c = (1, 2)
(b) g(x, y, z) = (sin(x+ y + z), xy cos(z)), c =

(
0, π4 ,

π
4

)
(c) h(s, t) = (3s2 + t, s− t, 4st2, 4t− s), c = (−1, 3)

2. Each of the following functions parametrizes a surface S in R3. In each case, find
parametric equations for the tangent plane P passing through the point f(s0, t0). Plot
S and P together.
(a) f(s, t) = (t cos(s), t sin(s), t), (s0, t0) =

(
π
2 , 2
)

(b) f(s, t) = (t2 cos(s), t2, t2 sin(s)), (s0, t0) = (0, 1)
(c) f(s, t) = (cos(s) sin(t), sin(s) sin(t), cos(t)), (s0, t0) =

(
π
2 ,

π
4

)
(d) f(s, t) = (3 cos(s) sin(t), sin(s) sin(t), 2 cos(t)), (s0, t0) =

(
π
4 ,

π
4

)
(e) f(s, t) = ((4 + 2 cos(t)) cos(s), (4 + 2 cos(t)) sin(s), 2 sin(t)), (s0, t0) =

(
3π
4 ,

π
4

)
3. Let S be the graph of a function f : R2 → R. Define the function F : R2 → R3

by F (s, t) = (s, t, f(s, t)). We may find an equation for the plane tangent to S at
(s0, t0, f(s0, t0)) using either the techniques of Section 3.3 (looking at S as the graph
of f) or the techniques of this section (looking at S as a surface parametrized by F ).
Verify that these two approaches yield equations for the same plane, both in the special
case when f(s, t) = s2 + t2 and (s0, t0) = (1, 2), and in the general case.

4. Use the chain rule to find the derivative of f ◦g at the point c for each of the following.
(a) f(x, y) = (x2y, x− y), g(s, t) = (3st, s2 − 4t), c = (1,−2)

(b) f(x, y, z) = (4xy, 3xz), g(s, t) =
(
st2 − 4t, s2,

4
st

)
, c = (−2, 3)

(c) f(x, y) = (3x+ 4y, 2x2y, x− y), g(s, t, u) = (4s− 3t+ u, 5st2), c = (1,−2, 3)
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5. Suppose
x = f(u, v),
y = g(u, v),

and
u = h(s, t),
v = k(s, t).

(a) Show that
∂x

∂s
=
∂x

∂u

∂u

∂s
+
∂x

∂v

∂v

∂s

and
∂x

∂t
=
∂x

∂u

∂u

∂t
+
∂x

∂v

∂v

∂t
.

(b) Find similar expressions for ∂y
∂s and ∂y

∂t .

6. Use your results in Problem 5 to find ∂x
∂s , ∂x

∂t , ∂y
∂s , and ∂y

∂t when

x = u2v,

y = 3u− v,

and
u = 4t2 − s2,

v =
4t
s
.

7. Suppose T is a function of x and y where

x = r cos(θ),
y = r sin(θ).

Show that
∂T

∂r
=
∂T

∂x
cos(θ) +

∂T

∂y
sin(θ)

and
∂T

∂θ
= −∂T

∂x
r sin(θ) +

∂T

∂y
r cos(θ).

8. Suppose the temperature at a point (x, y) in the plane is given by

T = 100− 20√
1 + x2 + y2

.

(a) If (r, θ) represents the polar coordinates of (x, y), use Problem 7 to find ∂T
∂r and

∂T
∂θ when r = 4 and θ = π

6 .

(b) Show that ∂T
∂θ = 0 for all values of r and θ. Can you explain this result geometri-

cally?
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9. Let T be the torus parametrized by

x = (4 + 2 cos(t)) cos(s),
y = (4 + 2 cos(t)) sin(s),
z = 2 sin(t),

for 0 ≤ s ≤ 2π and 0 ≤ t ≤ 2π.
(a) If U is a function of x, y, and z, find general expressions for ∂U

∂s and ∂U
∂t .

(b) Suppose
U = 80− 40e−

1
20 (x2+y2+z2)

gives the temperature at a point (x, y, z) on T . Find expressions for ∂U
∂s and ∂U

∂t in
this case. What is the geometrical interpretation of these quantities?

(c) Evaluate ∂U
∂s and ∂U

∂t in the particular case s = π
4 and t = π

4 .


