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In this chapter we will treat the general case of a function mapping Rm to Rn. Since the
cases m = 1 and n = 1 have been handled in previous chapters, our emphasis will be on
the higher dimensional cases, most importantly when m and n are 2 or 3. We will begin
in this section with some basic terminology and definitions.

Parametrized surfaces
If f : Rm → Rn has domain D, we call the set S of all points y in Rn for which y = f(x)
for some x in D the image of f . That is,

S = {f(x) : x ∈ D}, (4.1.1)

which is the same as what we have previously called the range of f . If m = 1, S is a curve
as defined in Section 2.1. If m > 1 and n > m, then we call S an m-dimensional surface
in Rn. If we let x = (x1, x2, . . . , xm) and (y1, y2, . . . , yn) = f(x1, x2, . . . , xm), then, for
k = 1, 2, . . . , n, we call the function fk : Rn → R defined by

fk(x1, x2, . . . , xm) = yk

the k-th coordinate function of f . We call the system of equations

y1 = f1(x1, x2, . . . , xm),
y2 = f2(x1, x2, . . . , xm),

... =
...

yn = fn(x1, x2, . . . , xm),

(4.1.2)

a parametrization of the surface S. Note that fk is the type of function we studied in
Chapter 3. On the other hand, if we fix values of xi for all i 6= k, then the function
ϕk : R→ Rn defined by

ϕk(t) = f(x1, x2, . . . , xk−1, t, xk+1, . . . , xm) (4.1.3)

is of the type we studied we Chapter 2. In particular, for each k = 1, 2, . . . , n, ϕk
parametrizes a curve which lies on the surface S. The following examples illustrate how
the latter remark is useful when trying to picture a parametrized surface S.

Example Consider f : R2 → R3 defined by

f(s, t) = (t cos(s), t sin(s), t)

1 Copyright c© by Dan Sloughter 2001
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Figure 4.1.1 Cone parametrized by f(s, t) = (t cos(s), t sin(s), t)

for 0 ≤ s ≤ 2π and −∞ < t <∞. The image of f is the surface S in R3 parametrized by
the equations

x = t cos(s),
y = t sin(s),
z = t.

Note that for a fixed value of t, the function

ϕ1(s) = (t cos(s), t sin(s), t)

parametrizes a circle of radius t on the plane z = t with center at (0, 0, t). On the other
hand, for a fixed value of s, the function

ϕ2(t) = (t cos(s), t sin(s), t) = t(cos(s), sin(s), 1)

parametrizes a line through the origin in the direction of the vector (cos(s), sin(s), 1. Hence
the surface S is a cone in R3, part of which is shown in Figure 4.1.1. Notice how the surface
was drawn by plotting the curves corresponding to fixed values of s and t (that is, the curves
parametrized by ϕ1 and ϕ2), and then filling in the resulting curvilinear “rectangles.”

Example For a fixed a > 0, consider the function f : R2 → R3 defined by

f(s, t) = (a cos(s) sin(t), a sin(s) sin(t), a cos(t))
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Figure 4.1.2 Unit sphere parametrized by f(s, t) = (cos(s) sin(t), sin(s) sin(t), cos(t))

for 0 ≤ s ≤ 2π and 0 ≤ t ≤ π. The image of f is the surface S in R3 parametrized by the
equations

x = a cos(s) sin(t),
y = a sin(s) sin(t),
z = a cos(t).

(4.1.4)

Note that these are the equations for the spherical coordinate change of variables discussed
in Section 3.7, with ρ = a, θ = s, and ϕ = t. Since a is fixed while s varies from 0 to 2π and
t varies from 0 to π, it follows that S is a sphere of radius a with center (0, 0, 0). Figure
4.1.2 displays S when a = 1. If we had not previously studied spherical coordinates, we
could reach this conclusion about S as follows. First note that

x2 + y2 + z2 = a2 cos2(s) sin2(t) + a2 sin2(s) sin2(t) + a2 cos2(t)

= a2 sin2(t)(cos2(s) + sin2(s)) + a2 cos2(t)

= a2(sin2(t) + cos2(t))

= a2,

from which it follows that every point of S lies on the sphere of radius a centered at the
origin. Now for a fixed value of t,

ϕ1(s) = (a cos(s) sin(t), a sin(s) sin(t), a cos(t))

parametrizes a circle in the plane z = a cos(t) with center (0, 0, a cos(t)) and radius a sin(t).
As t varies from 0 to π, these circles vary from a circle in the z = a plane with center
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(0, 0, a) and radius 0 (when t = 0) to a circle in the xy-plane with center (0, 0, 0) and radius
a (when t = π

2 ) to a circle in the z = −a plane with center (0, 0,−a) and radius 0 (when
t = π). In other words, the circles fill in all the “lines of latitude” of the sphere from the
“North Pole” to the “South Pole,” and hence S is all of the sphere. One may also show
that the functions

ϕ2(t) = (a cos(s) sin(t), a sin(s) sin(t), a cos(t))

parametrize the “lines of longitude” of S as s varies from 0 to 2π. Both the lines of
“latitude” and “longitude” are visible in Figure 4.2.2.

Example Suppose 0 < b < a and define f : R2 → R3 by

f(s, t) = ((a+ b cos(t)) cos(s), (a+ b cos(t)) sin(s), b sin(t))

for 0 ≤ s ≤ 2π and 0 ≤ t ≤ 2π. The image of f is the surface T parametrized by the
equations

x = (a+ b cos(t)) cos(s),
y = (a+ b cos(t)) sin(s),
z = b sin(t).

Note that for a fixed value of t,

ϕ1(s) = ((a+ b cos(t)) cos(s), (a+ b cos(t)) sin(s), b sin(t))

parametrizes a circle in the plane z = b sin(t) with center (0, 0, b sin(t) and radius a+b cos(t).
In particular, when t = 0, we have a circle in the xy-plane with center (0, 0, 0) and radius
a + b; when t = π

2 , we have a circle on the plane z = b with center (0, 0, b) and radius a;
when t = π, we have a circle on the xy-plane with center (0, 0, 0) and radius a − b; when
t = 3π

2 , we have a circle on the z = −b plane with center (0, 0,−b) and radius a; and when
t = 2π, we are back to a circle in the xy-plane with center (0, 0, 0) and radius a + b. For
fixed values of s, the curves parametrized by

ϕ2(t) = ((a+ b cos(t)) cos(s), (a+ b cos(t)) sin(s), b sin(t))

are not identified as easily. However, some particular cases are illuminating. When s = 0,
we have a circle in the xz-plane with center (a, 0, 0) and radius b; when s = π

2 , we have
a circle in the yz-plane with center (0, a, 0) and radius b; when s = π, we have a circle
in the xz-plane with center (−a, 0, 0) and radius b; when s = 3π

2 , we have a circle in the
yz-plane with center (0,−a, 0) and radius b; and when t = 2π, we are back to a circle in
the xz-plane with center (a, 0, 0) and radius b. Putting all this together, we see that T is
a torus, the surface of a doughnut shaped object. Figure 4.1.3 shows one such torus, the
case a = 3 and b = 1.
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Figure 4.1.3 A torus: f(s, t) = ((3 + cos(t)) cos(s), (3 + cos(t)) sin(s), sin(t))

Vector fields
We call a function f : Rn → Rn, that is, a function for which the domain and range space
have the same dimension, a vector field. We have seen a few examples of such functions
already. For example, the change of variable functions in Section 3.7 were of this type.
Also, given a function g : Rn → R, the gradient of g,

∇g(x) =
(

∂

∂x1
g(x),

∂

∂x2
g(x), . . . ,

∂

∂xn
g(x)

)
,

is a function from Rn to Rn. As we saw in our discussion of gradient vector fields in Section
3.2, a plot showing the vectors f(x) at each point in a rectangular grid provides a useful
geometric view of a vector field f .

Example Consider the vector field f : Rn → Rn defined by

f(x) = − x
‖x‖2

for all x 6= 0. Note that f(x) is a vector of length∥∥∥∥ x
‖x‖2

∥∥∥∥ =
‖x‖
‖x‖2

=
1
‖x‖

pointing in the direction opposite that of x. If n = 2, the coordinate functions of f are

f1(x1, x2) = − x1

x2
1 + x2

2

and
f2(x1, x2) = − x2

x2
1 + x2

2

.
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Figure 4.1.4 Vector field f(x) =
x
‖x‖2

for n = 2 and n = 3

Figure 4.1.4 shows a plot of the vectors f(x) for this case, drawn on a grid over the rectangle
[−3, 3]× [−3, 3], and for the case n = 3, using the cube [−3, 3]× [−3, 3]× [−3, 3]. Note that
these plots do not show the vectors f(x) themselves, but vectors which have been scaled
proportionately so they do not overlap one another.

Limits and continuity

The definitions of limits and continuity for functions f : Rm → Rn follow the familiar
pattern.

Definition Let a be a point in Rm and let O be the set of all points in the open ball of
radius r > 0 centered at a except a. That is,

O = {x : x ∈ Bm(a, r),x 6= a}.

Suppose f : Rm → Rn is defined for all x in O. We say the limit of f(x) as x approaches
a is L, written lim

x→a
f(x) = L, if for every sequence of points {xk} in O,

lim
k→∞

f(xk) = L (4.1.5)

whenever lim
k→∞

xk = a.

In Section 2.1 we saw that a sequence of points in Rn has a limit if and only if the
individual coordinates of the points in the sequence each have a limit. The following
proposition is an immediate consequence.
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Proposition If fk : Rm → R, k = 1, 2, . . . , n, is the kth coordinate function of f : Rm →
Rn, then

lim
x→a

f(x) = (L1, L2, . . . , Ln)

if and only if
lim
x→a

fk(x) = Lk

for k = 1, 2, . . . , n.
In other words, the computation of limits for functions f : Rm → Rn reduces to the

familiar problem of computing limits of real-valued functions, as we discussed in Section
3.1.

Example If
f(x, y, z) = (x2 − 3yz, 4xz),

a function from R3 to R2, then, for example,

lim
(x,y,z)→(1,−2,3)

f(x, y, z) =
(

lim
(x,y,z)→(1,−2,3)

(x2 − 3yz), lim
(x,y,z)→(1,−2,3)

4xz
)

= (19, 12).

Definition Suppose f : Rm → Rn is defined for all x in some open ball Bn(a, r), r > 0.
We say f is continuous at a if lim

x→a
f(x) = f(a).

The following result is an immediate consequence of the previous proposition.

Proposition If fk : Rm → R, k = 1, 2, . . . , n, is the kth coordinate function of f : Rm →
Rn, then f is continuous at a point a if and only if fk is continuous at a for k = 1, 2, . . . , n.

In other words, checking for continuity for a function f : Rm → Rn reduces to checking
the continuity of real-valued functions, a familiar problem from Section 3.1.

Example The function
f(x, y) = (3 sin(x+ y), 4x2y)

has coordinate functions
f1(x, y) = 3 sin(x+ y)

and
f2(x, y) = 4x2y.

Since, from our results in Section 3.1, both f1 and f2 are continuous at every point in R2,
it follows that f is continuous at every point in R2.

Definition We say a function f : Rm → Rn is continuous on an open set U if f is
continuous at every point u in U .

Example We may restate the conclusion of the previous example by saying that

f(x, y) = (3 sin(x+ y), 4x2y)

is continuous on R2.
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Problems

1. For each of the following, plot the surface parametrized by the given function.
(a) f(s, t) = (t2 cos(s), t2 sin(s), t2), 0 ≤ s ≤ 2π, 0 ≤ t ≤ 3
(b) f(u, v) = (3 cos(u) sin(v), sin(u) sin(v), 2 cos(v)), 0 ≤ u ≤ 2π, 0 ≤ v ≤ π
(c) g(s, t) = ((4 + 2 cos(t)) cos(s), (4 + 2 cos(t)) sin(s), 2 sin(t)), 0 ≤ s ≤ 2π, 0 ≤ t ≤ 2π
(d) f(s, t) = ((5 + 2 cos(t)) cos(s), 2(5 + 2 cos(t)) sin(s), sin(t)), 0 ≤ s ≤ 2π, 0 ≤ t ≤ 2π
(e) h(u, v) = (sin(v), (3 + cos(v)) cos(u), (3 + cos(v)) sin(u)), 0 ≤ u ≤ 2π, 0 ≤ v ≤ 2π
(f) g(s, t) = (s, s2 + t2, t), −2 ≤ s ≤ 2, −2 ≤ t ≤ 2
(g) f(x, y) = (y cos(x), y, y sin(x)), 0 ≤ x ≤ 2π, −5 ≤ y ≤ 5

2. Suppose f : R2 → R and we define F : R2 → R3 by F (s, t) = (s, t, f(s, t)). Describe
the surface parametrized by F .

3. Find a parametrization for the surface that is the graph of the function f(x, y) =
x2 + y2.

4. Make plots like those in Figure 4.1.4 for each of the following vector fields. Experiment
with the rectangle used for the grid, as well as with the number of vectors drawn.
(a) f(x, y) = (y,−x)
(b) g(x, y) = (y,− sin(x))
(c) f(u, v) = (v, u− u3 − v)
(d) f(x, y) = (x(1− y2)− y, x)

(e) f(x, y, z) =
(

10(y − x), 28x− y − xz,−8
3
z + xy

)
(f) f(x, y, z) =

1√
x2 + y2 + z2

(x, y, z)

(g) g(u, v, w) = − 1
(u− 1)2 + (v − 2)2 + (w − 1)2

(u− 1, v − 2, w − 1)

5. Find the set of points in R2 for which the vector field

f(x, y) =
(

4x sin(x− y),
4x+ 3y
2x− y

)
is continuous.

6. For which points in Rn is the vector field

f(x) =
x

log(‖x‖)

a continuous function?


