The Calculus of Functions

$\boldsymbol{o f}$
Several Variables

Section 3.7

Change of Variables in Integrals

One of the basic techniques for evaluating an integral in one-variable calculus is substitution, replacing one variable with another in such a way that the resulting integral is of a simpler form. Although slightly more subtle in the case of two or more variables, a similar idea provides a powerful technique for evaluating definite integrals.

Linear change of variables

We will present the main idea through an example. Let

$$
D=\left\{(x, y): 9 x^{2}+4 y^{2} \leq 36\right\},
$$

the region inside the ellipse which intersects the x-axis at $(-2,0)$ and $(2,0)$ and the y-axis at $(0,-3)$ and $(0,3)$. To find the area of D, we evaluate

$$
\iint_{D} d x d y=\int_{-2}^{2} \int_{-\frac{3}{2} \sqrt{4-x^{2}}}^{\frac{3}{2} \sqrt{4-x^{2}}} d y d x=\int_{-2}^{2} 3 \sqrt{4-x^{2}} d x=6 \pi
$$

where the final integral may be evaluated using the substitution $x=2 \sin (\theta)$ or by noting that

$$
\int_{-2}^{2} \sqrt{4-x^{2}} d x
$$

is one-half of the area of a circle of radius 2. Alternatively, suppose we write the equation of the ellipse as

$$
\frac{x^{2}}{4}+\frac{y^{2}}{9}=1
$$

and make the substitution $x=2 u$ and $y=3 v$. Then $u=\frac{x}{2}$ and $v=\frac{y}{3}$, so if (x, y) is a point in D, then

$$
u^{2}+v^{2}=\frac{x^{2}}{4}+\frac{y^{2}}{9} \leq 1
$$

That is, if (x, y) is a point in D, then (u, v) is a point in the unit disk

$$
E=\left\{(u, v): u^{2}+v^{2} \leq 1\right\}
$$

Conversely, if (u, v) is a point in E, then

$$
\frac{x^{2}}{4}+\frac{y^{2}}{9}=\frac{4 u^{2}}{4}+\frac{9 v^{2}}{9}=u^{2}+v^{2} \leq 1
$$

Figure 3.7.1 F maps E onto D
so (x, y) is a point in D. Thus the function $F(u, v)=(2 u, 3 v)$ takes the region E, a closed disk of radius 1, and stretches it onto the region D (as shown in Figure 3.7.1). However, note that even though every point in E corresponds to exactly one point in D, and, conversely, every point in D corresponds to exactly on point in E, nevertheless E and D do not have the same area. To see how F changes area, consider what it does to the unit square S with sides $\mathbf{e}_{1}=(1,0)$ and $\mathbf{e}_{2}=(0,1)$. The area of S is 1 , but F maps S onto a rectangle R with sides

$$
F(1,0)=(2,0)
$$

and

$$
F(0,1)=(0,3)
$$

and area 6. This a special case of a general fact we saw in Section 1.6: the linear function F, with associated matrix

$$
M=\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right],
$$

maps the unit square S onto a parallelogram R with area

$$
|\operatorname{det}(M)|=6
$$

The important fact for us here is that 1 unit of area in the $u v$-plane corresponds to 6 units of area in the $x y$-plane. Hence the area of D will be 6 times the area of E. That is,

$$
\iint_{D} d x d y=\iint_{E}|\operatorname{det}(M)| d u d v=\iint_{E} 6 d u d v=6 \iint_{E} d u d v=6 \pi
$$

where the final integral is simply the area inside a circle of radius 1 .

Figure 3.7.2 The ellipsoid $\frac{x^{2}}{4}+\frac{y^{2}}{16}+\frac{z^{2}}{9}=1$

These ideas provide the background for a proof of the following theorem.
Theorem Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous on a an open set U containing the closed bounded set D. Suppose $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear function, M is an $n \times n$ matrix such that $F(\mathbf{u})=M \mathbf{u}$, and $\operatorname{det}(M) \neq 0$. If F maps the region E onto the region D and we define the change of variables

$$
\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=M\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right]
$$

then

$$
\begin{align*}
& \iint \cdots \int_{D} f\left(x_{1}, x_{2}, \ldots, x_{n}\right) d x_{1} d x_{2} \cdots d x_{n} \\
&=\iint \cdots \int_{E} f\left(F\left(u_{1}, u_{2}, \ldots, u_{n}\right)\right)|\operatorname{det}(M)| d u_{1} d u_{2} \cdots d u_{n} \tag{3.7.1}
\end{align*}
$$

Example Let D be the region in \mathbb{R}^{3} bounded by the ellipsoid with equation

$$
\frac{x^{2}}{4}+\frac{y^{2}}{16}+\frac{z^{2}}{9}=1
$$

See Figure 3.7.2. If we make the change of variables $x=2 u, y=4 v$, and $z=3 w$, that is,

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 3
\end{array}\right]\left[\begin{array}{c}
u \\
v \\
w
\end{array}\right],
$$

then, for any (x, y, z) in D, we have

$$
u^{2}+v^{2}+w^{2}=\frac{x^{2}}{4}+\frac{y^{2}}{16}+\frac{z^{2}}{9} \leq 1
$$

That is, if (x, y, z) lies in D, then the corresponding (u, v, w) lies in the closed unit ball $E=\bar{B}^{3}((0,0,0), 1)$. Conversely, if (u, v, w) lies in E, then

$$
\frac{x^{2}}{4}+\frac{y^{2}}{16}+\frac{z^{2}}{9}=\frac{4 u^{2}}{4}+\frac{16 v^{2}}{16}+\frac{9 w^{2}}{9}=u^{2}+v^{2}+w^{2} \leq 1
$$

so (x, y, z) lies in D. Hence, the change of variables $F(u, v, w)=(2 u, 4 v, 3 w)$ maps E onto D. Now

$$
\operatorname{det}\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 3
\end{array}\right]=24
$$

so if V is the volume of D, then

$$
V=\iiint_{D} d x d y d z=\iiint_{E} 24 d u d v d w=24 \iiint_{E} d u d v d w=24\left(\frac{4 \pi}{3}\right)=32 \pi
$$

where we have used the fact that the volume of a sphere of radius 1 is $\frac{4 \pi}{3}$ to evaluate the final integral.

Nonlinear change of variables

Without going into the technical details, we will indicate how to proceed when the change of variables is not linear. Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous on a an open set U containing the closed bounded set D and $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ maps a closed bounded region E of \mathbb{R}^{n} onto D so that every point of D corresponds to exactly one point of E. Writing $F(\mathbf{u})=$ $\left(F_{1}(\mathbf{u}), F_{2}(\mathbf{u}), \ldots, F_{n}(\mathbf{u})\right)$, we will assume that F_{1}, F_{2}, \ldots, and F_{n} are all differentiable on an open set W containing E. Although we will not study this type of function until Chapter 4, the natural candidate for the derivative of F is the matrix whose i th row is $\nabla F_{i}(\mathbf{u})$. Letting $x_{i}=F_{i}\left(u_{1}, u_{2}, \ldots, u_{n}\right), i=1,2, \ldots, n$, we denote this matrix, called the Jacobian matrix of F,

$$
\begin{equation*}
\frac{\partial\left(x_{1}, x_{2}, \ldots, x_{n}\right)}{\partial\left(u_{1}, u_{2}, \ldots, u_{n}\right)} \tag{3.7.2}
\end{equation*}
$$

Explicitly,

$$
\frac{\partial\left(x_{1}, x_{2}, \ldots, x_{n}\right)}{\partial\left(u_{1}, u_{2}, \ldots, u_{n}\right)}=\left[\begin{array}{cccc}
\frac{\partial}{\partial u_{1}} F_{1}(\mathbf{u}) & \frac{\partial}{\partial u_{2}} F_{1}(\mathbf{u}) & \cdots & \frac{\partial}{\partial u_{n}} F_{1}(\mathbf{u}) \tag{3.7.3}\\
\frac{\partial}{\partial u_{1}} F_{2}(\mathbf{u}) & \frac{\partial}{\partial u_{2}} F_{2}(\mathbf{u}) & \cdots & \frac{\partial}{\partial u_{n}} F_{2}(\mathbf{u}) \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial}{\partial u_{1}} F_{n}(\mathbf{u}) & \frac{\partial}{\partial u_{2}} F_{n}(\mathbf{u}) & \cdots & \frac{\partial}{\partial u_{n}} F_{n}(\mathbf{u})
\end{array}\right]
$$

Figure 3.7.3 Polar and Cartesian coordinates for a point P

We shall see in Chapter 4 that

$$
\frac{\partial\left(x_{1}, x_{2}, \ldots, x_{n}\right)}{\partial\left(u_{1}, u_{2}, \ldots, u_{n}\right)}
$$

is the matrix for the linear part of the best affine approximation to F at $\left(u_{1}, u_{2}, \ldots, u_{n}\right)$. Hence, for sufficiently small rectangles, the factor by which F changes the area of a rectangle when it maps it to a region will be approximately

$$
\begin{equation*}
\left|\operatorname{det} \frac{\partial\left(x_{1}, x_{2}, \ldots, x_{n}\right)}{\partial\left(u_{1}, u_{2}, \ldots, u_{n}\right)}\right| . \tag{3.7.4}
\end{equation*}
$$

One may then show that, analogous to (3.7.1), we have

$$
\begin{align*}
& \int \cdots \iint_{D} f\left(x_{1}, x_{2}, \ldots, x_{n}\right) d x_{1} d x_{2} \cdots d x_{n} \tag{3.7.5}\\
& \quad=\int \cdots \iint_{E} f\left(F\left(u_{1}, u_{2}, \ldots, u_{n}\right)\right)\left|\operatorname{det} \frac{\partial\left(x_{1}, x_{2}, \ldots, x_{n}\right)}{\partial\left(u_{1}, u_{2}, \ldots, u_{n}\right)}\right| d u_{1} d u_{2} \cdots d u_{n}
\end{align*}
$$

Note that (3.7.5) is just (3.7.1) with the matrix M replaced by the Jacobian of F.
We will now look at two very useful special cases of the preceding result. See Problems 22 and 23 for a third special case.

Polar coordinates

As an alternative to describing the location of a point P in the plane using its Cartesian coordinates (x, y), we may locate the point using r, the distance from P to the origin, and θ, the angle between the vector from $(0,0)$ to P and the positive x-axis, measured in the counterclockwise direction from 0 to 2π (see Figure 3.7.3). That is, if P has Cartesian coordinates (x, y), with $x \neq 0$, we may define its polar coordinates (r, θ) by specifying that

$$
\begin{equation*}
r=\sqrt{x^{2}+y^{2}} \tag{3.7.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\tan (\theta)=\frac{y}{x} \tag{3.7.7}
\end{equation*}
$$

where we take $0 \leq \theta \leq \pi$ if $y \geq 0$ and $\pi<\theta<2 \pi$ if $y<0$. If $x=0$, we let $\theta=\frac{\pi}{2}$ if $y>0$ and $\theta=\frac{3 \pi}{2}$ if $y<0$. For $(x, y)=(0,0), r=0$ and θ could have any value, and so is undefined. Conversely, if a point P has polar coordinates (r, θ), then

$$
\begin{equation*}
x=r \cos (\theta) \tag{3.7.8}
\end{equation*}
$$

and

$$
\begin{equation*}
y=r \sin (\theta) \tag{3.7.9}
\end{equation*}
$$

Note that the choice of the interval $[0,2 \pi)$ for the values of θ is not unique, with any interval of length 2π working as well. Although $[0,2 \pi)$ is the most common choice for values of θ, it is sometimes useful to use $(-\pi, \pi)$ instead.
Example If a point P has Cartesian coordinates $(-1,1)$, then its polar coordinates are $\left(\sqrt{2}, \frac{3 \pi}{4}\right)$.
Example A point with polar coordinates $\left(3, \frac{\pi}{6}\right)$ has Cartesian coordinates $\left(\frac{3 \sqrt{3}}{2}, \frac{3}{2}\right)$.
In our current context, we want to think of the polar coordinate mapping

$$
\begin{equation*}
(x, y)=F(r, \theta)=(r \cos (\theta), r \sin (\theta)) \tag{3.7.10}
\end{equation*}
$$

as a change of variables between the $r \theta$-plane and the $x y$-plane. This mapping is particularly useful for us because it maps rectangular regions in the $r \theta$-plane onto circular regions in the $x y$-plane. For example, for any $a>0, F$ maps the rectangular region

$$
E=\{(r, \theta): 0 \leq r \leq a, 0 \leq \theta<2 \pi\}
$$

in the $r \theta$-plane onto the closed disk

$$
D=\bar{B}^{2}((0,0), a)=\left\{(x, y): x^{2}+y^{2} \leq a\right\}
$$

in the $x y$-plane (see Figure 3.7.5 below for an example). More generally, for any $0 \leq \alpha<$ $\beta<2 \pi, F$ maps the rectangular region

$$
E=\{(r, \theta): 0 \leq r \leq a, \alpha \leq \theta<\beta\}
$$

in the $r \theta$-plane onto a region D in the $x y$-plane which is the sector of the closed disk $\bar{B}^{2}((0,0), a)$ which lies between radii of angles α and β (see Figure 3.7.4). Another basic example is an annulus: for any $0<a<b, F$ maps the rectangular region

$$
E=\{(r, \theta): a \leq r \leq b, 0 \leq \theta<2 \pi\}
$$

in the $r \theta$-plane onto the annulus

$$
D=\left\{(x, y): a \leq x^{2}+y^{2} \leq b\right\}
$$

in the $x y$-plane. Figure 3.7.6 illustrates this mapping for the upper half of an annulus.

Figure 3.7.4 Polar coordinate change of variables

Example Let V be the volume of the region which lies beneath the paraboloid with equation $z=4-x^{2}-y^{2}$ and above the $x y$-plane. In Section 3.6, we saw that

$$
V=\iint_{D}\left(4-x^{2}-y^{2}\right) d x d y=8 \pi
$$

where

$$
D=\left\{(x, y): x^{2}+y^{2} \leq 4\right\}
$$

The use of polar coordinates greatly simplifies the evaluation of this integral. With the polar coordinate change of variables

$$
x=r \cos (\theta)
$$

and

$$
y=r \sin (\theta)
$$

the closed disk D in the $x y$-plane corresponds to the closed rectangle

$$
E=\{(r, \theta): 0 \leq r \leq 2,0 \leq \theta \leq 2 \pi\}
$$

in the $r \theta$-plane (see Figure 3.7.5). Note that in describing E we have allowed $\theta=2 \pi$, but this has no affect on our outcome since a line has no area in \mathbb{R}^{2}. Moreover, if we let $f(x, y)=4-x^{2}-y^{2}$, then

$$
\begin{aligned}
f(F(r, \theta)) & =f(r \cos (\theta), r \sin (\theta)) \\
& =4-r^{2} \cos ^{2}(\theta)-r^{2} \sin (\theta) \\
& =4-r^{2}\left(\cos ^{2}(\theta)+\sin ^{2}(\theta)\right. \\
& =4-r^{2}
\end{aligned}
$$

Figure 3.7.5 Polar coordinate change of variables maps $[0,2] \times[0,2 \pi]$ to $\bar{B}^{2}((0,0), 2)$
which also follows from the fact that $r^{2}=x^{2}+y^{2}$. Now

$$
\frac{\partial(x, y)}{\partial(r, \theta)}=\left[\begin{array}{ll}
\frac{\partial}{\partial r} r \cos (\theta) & \frac{\partial}{\partial \theta} r \cos (\theta) \tag{3.7.11}\\
\frac{\partial}{\partial r} r \sin (\theta) & \frac{\partial}{\partial \theta} r \sin (\theta)
\end{array}\right]=\left[\begin{array}{rr}
\cos (\theta) & -r \sin (\theta) \\
\sin (\theta) & r \cos (\theta)
\end{array}\right]
$$

so

$$
\begin{equation*}
\operatorname{det} \frac{\partial(x, y)}{\partial(r, \theta)}=r \cos ^{2}(\theta)+r \sin ^{2}(\theta)=r\left(\cos ^{2}(\theta)+\sin ^{2}(\theta)\right)=r \tag{3.7.12}
\end{equation*}
$$

Hence, using (3.7.5), we have

$$
\begin{aligned}
\iint_{D}\left(4-x^{2}-y^{2}\right) d x d y & =\iint_{E}\left(4-r^{2}\right)\left|\operatorname{det} \frac{\partial(x, y)}{\partial(r, \theta)}\right| d r d \theta \\
& =\int_{0}^{2} \int_{0}^{2 \pi}\left(4-r^{2}\right) r d \theta d r \\
& =\int_{0}^{2} 2 \pi\left(4 r-r^{3}\right) d r \\
& =\left.2 \pi\left(2 r^{2}-\frac{r^{4}}{4}\right)\right|_{0} ^{2} \\
& =2 \pi(8-4) \\
& =8 \pi
\end{aligned}
$$

Example Suppose D is the part of the region between the circles with equations $x^{2}+y^{2}=$ 1 and $x^{2}+y^{2}=9$ which lies above the x-axis. That is,

$$
D=\left\{(x, y): 1 \leq x^{2}+y^{2} \leq 9, x \geq 0\right\}
$$

Figure 3.7.6 Polar coordinates map $[1,3] \times[0, \pi]$ to top half of an annulus

We wish to evaluate

$$
\iint_{D} e^{-\left(x^{2}+y^{2}\right)} d x d y
$$

Under the polar coordinate change of variables

$$
x=r \cos (\theta)
$$

and

$$
y=r \sin (\theta)
$$

the annular region D corresponds to the closed rectangle

$$
E=\{(r, \theta): 1 \leq r \leq 3,0 \leq \theta \leq \pi\}
$$

as illustrated in Figure 3.7.6. Moreover, $x^{2}+y^{2}=r^{2}$ and, as we saw in the previous example,

$$
\left|\operatorname{det} \frac{\partial(x, y)}{\partial(r, \theta)}\right|=r
$$

Hence

$$
\begin{aligned}
\iint_{D} e^{-\left(x^{2}+y^{2}\right)} d x d y & =\iint_{E} r e^{-r^{2}} d r d \theta \\
& =\int_{1}^{3} \int_{0}^{\pi} r e^{-r^{2}} d \theta d r \\
& =\int_{1}^{3} \pi r e^{-r^{2}} d r \\
& =-\left.\frac{\pi}{2} e^{-r^{2}}\right|_{1} ^{3} \\
& =\frac{\pi}{2}\left(e^{-1}-e^{-9}\right)
\end{aligned}
$$

Note that in this case the change of variables not only simplified the region of integration, but also put the function being integrated into a form to which we could apply the Fundamental Theorem of Calculus.

Figure 3.7.7 Spherical and Cartesian coordinates for a point P

Spherical coordinates

Next consider the following extension of polar coordinates to three space: given a point P with Cartesian coordinates (x, y, z), let ρ be the distance from P to the origin, θ be the angle coordinate for the polar coordinates of $(x, y, 0)$ (the projection of P onto the $x y$-plane), and let φ be the angle between the vector from the origin to P and the positive z-axis, measured from 0 to π. If $x \neq 0$, we have

$$
\begin{gather*}
\rho=\sqrt{x^{2}+y^{2}+z^{2}} \tag{3.7.13}\\
\tan (\theta)=\frac{y}{x} \tag{3.7.14}
\end{gather*}
$$

and

$$
\begin{equation*}
\cos (\varphi)=\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}} \tag{3.7.15}
\end{equation*}
$$

where $0 \leq \theta<2 \pi$ and $0 \leq \varphi \leq \pi$. As with polar coordinates, if $x=0$ we let $\theta=\frac{\pi}{2}$ if $y>0, \theta=\frac{3 \pi}{2}$ if $y<0$, and θ is undefined if $y=0$. See Figure 3.7.7. Conversely, given a point P with spherical coordinates (ρ, θ, φ), the projection of P onto the $x y$-plane will have polar coordinate $r=\rho \sin (\varphi)$. Hence the Cartesian coordinates of P are

$$
\begin{align*}
& x=\rho \cos (\theta) \sin (\varphi), \tag{3.7.16}\\
& y=\rho \sin (\theta) \sin (\varphi), \tag{3.7.17}
\end{align*}
$$

and

$$
\begin{equation*}
z=\rho \cos (\varphi) \tag{3.7.18}
\end{equation*}
$$

Example If a point P has Cartesian coordinates $(2,-2,1)$, then its spherical coordinates satisfy

$$
\rho=\sqrt{4+4+1}=3
$$

$$
\tan (\theta)=\frac{-2}{2}=-1
$$

and

$$
\cos (\varphi)=\frac{1}{\sqrt{4+4+1}}=\frac{1}{3} .
$$

Hence we have

$$
\theta=\frac{7 \pi}{4}
$$

and

$$
\varphi=\cos ^{-1}\left(\frac{1}{3}\right)=1.2310
$$

where we have rounded the value of φ to four decimal places. Hence P has spherical coordinates $\left(3, \frac{7 \pi}{4}, 1.2310\right)$.
Example If a point P has spherical coordinates $\left(4, \frac{\pi}{3}, \frac{3 \pi}{4}\right)$, then its Cartesian coordinates are

$$
\begin{gathered}
x=4 \cos \left(\frac{\pi}{3}\right) \sin \left(\frac{3 \pi}{4}\right)=4\left(\frac{1}{2}\right)\left(\frac{1}{\sqrt{2}}\right)=\sqrt{2} \\
y=4 \sin \left(\frac{\pi}{3}\right) \sin \left(\frac{3 \pi}{4}\right)=4\left(\frac{\sqrt{3}}{2}\right)\left(\frac{1}{\sqrt{2}}\right)=\sqrt{6}
\end{gathered}
$$

and

$$
z=4 \cos \left(\frac{3 \pi}{4}\right)=4\left(-\frac{1}{\sqrt{2}}\right)=-2 \sqrt{2}
$$

Analogous to our work with polar coordinates, we think of the spherical coordinate mapping

$$
\begin{equation*}
(x, y, z)=F(\rho, \theta, \varphi)=(\rho \cos (\theta) \sin (\varphi), \rho \sin (\theta) \sin (\varphi), \rho \cos (\varphi)) \tag{3.7.19}
\end{equation*}
$$

as a change of variables between $\rho \theta \varphi$-space and $x y z$-space. This mapping is particularly useful for evaluating triple integrals because it maps rectangular regions in $\rho \theta \varphi$-space onto spherical regions in $x y z$-space. For the most basic example, for any $a>0, F$ maps the rectangular region

$$
E=\{(\rho, \theta, \varphi): 0 \leq \rho \leq a, 0 \leq \theta<2 \pi, 0 \leq \varphi \leq \pi\}
$$

in $\rho \theta \varphi$-space onto the closed ball

$$
D=\bar{B}^{3}((0,0,0), a)=\left\{(x, y, z): x^{2}+y^{2}+z^{2} \leq a\right\}
$$

in $x y z$-space. More generally, for any $0<a<b, 0 \leq \alpha<\beta<2 \pi$, and $0 \leq \gamma<\delta \leq \pi, F$ maps the rectangular region

$$
E=\{(\rho, \theta, \varphi): a \leq \rho \leq b, \alpha \leq \theta<\beta, \gamma \leq \varphi \leq \delta\}
$$

onto a region D in $x y z$-space which lies between the concentric spheres $S^{2}((0,0,0), a)$ and $S^{2}((0,0,0), b)$, and for which the angle θ lies between α and β and the angle φ between γ and δ. For example, if $\alpha=0, \beta=\pi, \gamma=0$, and $\delta=\frac{\pi}{2}$, then D is one-half of the region lying between two concentric hemispheres with radii a and b.

Before using the spherical coordinate change of variable in (3.7.19) to evaluate an integral using (3.7.5), we need to compute the determinate of the Jacobian of F. Now

$$
\begin{align*}
\frac{\partial(x, y, z)}{\partial(\rho, \theta, \varphi)} & =\left[\begin{array}{ccc}
\frac{\partial}{\partial \rho} \rho \cos (\theta) \sin (\varphi) & \frac{\partial}{\partial \theta} \rho \cos (\theta) \sin (\varphi) & \frac{\partial}{\partial \varphi} \rho \cos (\theta) \sin (\varphi) \\
\frac{\partial}{\partial \rho} \rho \sin (\theta) \sin (\varphi) & \frac{\partial}{\partial \theta} \rho \sin (\theta) \sin (\varphi) & \frac{\partial}{\partial \varphi} \rho \sin (\theta) \sin (\varphi) \\
\frac{\partial}{\partial \rho} \rho \cos (\varphi) & \frac{\partial}{\partial \theta} \rho \cos (\varphi) & \frac{\partial}{\partial \varphi} \rho \cos (\varphi)
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\cos (\theta) \sin (\varphi) & -\rho \sin (\theta) \sin (\varphi) & \rho \cos (\theta) \cos (\varphi) \\
\sin (\theta) \sin (\varphi) & \rho \cos (\theta) \sin (\varphi) & \rho \sin (\theta) \cos (\varphi) \\
\cos (\varphi) & 0 & -\rho \sin (\varphi)
\end{array}\right] \tag{3.7.20}
\end{align*}
$$

so, expanding along the third row,

$$
\begin{align*}
\operatorname{det} \frac{\partial(x, y, z)}{\partial(\rho, \theta, \varphi)}= & \cos (\varphi)\left(-\rho^{2} \sin ^{2}(\theta) \sin (\varphi) \cos (\varphi)-\rho^{2} \cos ^{2}(\theta) \sin (\varphi) \cos (\varphi)\right) \\
& -\rho \sin (\varphi)\left(\rho \cos ^{2}(\theta) \sin ^{2}(\varphi)+\rho \sin ^{2}(\theta) \sin ^{2}(\varphi)\right. \\
= & -\rho^{2} \sin (\varphi) \cos ^{2}(\varphi)\left(\sin ^{2}(\theta)+\cos ^{2}(\theta)\right)-\rho^{2} \sin ^{3}(\varphi)\left(\sin ^{2}(\theta)+\cos ^{2}(\theta)\right) \\
= & -\rho^{2} \sin (\varphi) \cos ^{2}(\varphi)-\rho^{2} \sin ^{3}(\varphi) \\
=- & \rho^{2} \sin (\varphi)\left(\cos ^{2}(\varphi)+\sin ^{2}(\varphi)\right) \\
=- & \rho^{2} \sin (\varphi) \tag{3.7.21}
\end{align*}
$$

Now $\rho \geq 0$ and, since $0 \leq \varphi \leq \pi, \sin (\varphi) \geq 0$, so

$$
\begin{equation*}
\left|\frac{\partial(x, y, z)}{\partial(\rho, \theta, \varphi)}\right|=\rho^{2} \sin (\varphi) \tag{3.7.22}
\end{equation*}
$$

Example In an earlier example we used the fact that the volume of a sphere of radius 1 is $\frac{4 \pi}{3}$. In this example we will verify that the volume of a sphere of radius a is $\frac{4}{3} \pi a^{3}$. Let V be the volume of

$$
D=\bar{B}^{3}((0,0,0), a)
$$

the closed ball of radius a centered at the origin in \mathbb{R}^{3}. Then

$$
V=\iiint_{D} d x d y d z
$$

Although we may evaluate this integral using Cartesian coordinates, we will find it significantly easier to use spherical coordinates. Using the spherical coordinate change of variables

$$
\begin{aligned}
& x=\rho \cos (\theta) \sin (\varphi), \\
& y=\rho \sin (\theta) \sin (\varphi)
\end{aligned}
$$

and

$$
z=\rho \cos (\varphi)
$$

the region D in $x y z$-space corresponds to the region

$$
E=\{(\rho, \theta, \varphi): 0 \leq \rho \leq a, 0 \leq \theta \leq 2 \pi, 0 \leq \varphi \leq \pi\}
$$

in $\rho \theta \varphi$-space. Using (3.7.22) in the change of variables formula (3.7.5), we have

$$
\begin{aligned}
V & =\iiint_{D} d x d y d z \\
& =\iiint_{E}\left|\operatorname{det} \frac{\partial(x, y, z)}{\partial(\rho, \theta, \varphi)}\right| d \rho d \theta d \varphi \\
& =\int_{0}^{1} \int_{0}^{2 \pi} \int_{0}^{\pi} \rho^{2} \sin (\varphi) d \varphi d \theta d \rho \\
& =\left.\int_{0}^{a} \int_{0}^{2 \pi}\left(-\rho^{2} \cos (\varphi)\right)\right|_{0} ^{\pi} d \theta d \rho \\
& =\int_{0}^{a} \int_{0}^{2 \pi}\left(-\rho^{2}(-1-1)\right) d \theta d \rho \\
& =2 \int_{0}^{a} \int_{0}^{2 \pi} \rho^{2} d \theta d \rho \\
& =4 \pi \int_{0}^{a} \rho^{2} d \rho \\
& =\left.\frac{4 \pi}{3} \rho^{3}\right|_{0} ^{a} \\
& =\frac{4}{3} \pi a^{3}
\end{aligned}
$$

Example Suppose we wish to evaluate

$$
\iiint_{D} \log \sqrt{x^{2}+y^{2}+z^{2}} d x d y d z
$$

where D is the region in \mathbb{R}^{3} which lies between the two spheres with equations $x^{2}+y^{2}+z^{2}=$ 1 and $x^{2}+y^{2}+z^{2}=4$ and above the $x y$-plane. Under the spherical coordinate change of variables

$$
x=\rho \cos (\theta) \sin (\varphi),
$$

$$
y=\rho \sin (\theta) \sin (\varphi),
$$

and

$$
z=\rho \cos (\varphi)
$$

the region D in $x y z$-space corresponds to the region

$$
E=\left\{(\rho, \theta, \varphi): 1 \leq \rho \leq 2,0 \leq \theta \leq 2 \pi, 0 \leq \varphi \leq \frac{\pi}{2}\right\}
$$

in $\rho \theta \varphi$-space. Using (3.7.22) in the change of variables formula (3.7.5), we have

$$
\begin{aligned}
\iiint_{D} \log \sqrt{x^{2}+y^{2}+z^{2}} d x d y d z & =\iiint_{E} \log (\rho)\left|\frac{\partial(x, y, z)}{\partial(\rho, \theta, \varphi)}\right| d \rho d \theta d \varphi \\
& =\int_{1}^{2} \int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{2}} \rho^{2} \log (\rho) \sin (\varphi) d \varphi d \theta d \rho \\
& =\left.\int_{1}^{2} \int_{0}^{2 \pi}\left(-\rho^{2} \log (\rho) \cos (\varphi)\right)\right|_{0} ^{\frac{\pi}{2}} d \theta d \rho \\
& =\int_{1}^{2} \int_{0}^{2 \pi}\left(-\rho^{2} \log (\rho)\right)(0-1) d \theta d \rho \\
& =\int_{1}^{2} \int_{0}^{2 \pi} \rho^{2} \log (\rho) d \theta d \rho \\
& =2 \pi \int_{1}^{2} \rho^{2} \log (\rho) d \rho
\end{aligned}
$$

We use integration by parts to evaluate this final integral: letting

$$
\begin{aligned}
u & =\log (\rho) & d v & =\rho^{2} d \rho \\
d u & =\frac{1}{\rho} d \rho & v & =\frac{\rho^{3}}{3}
\end{aligned}
$$

we have

$$
\begin{aligned}
\iiint_{D} \log \sqrt{x^{2}+y^{2}+z^{2}} d x d y d z & =2 \pi\left(\left.\frac{1}{3} \rho^{3} \log (\rho)\right|_{1} ^{2}-\frac{1}{3} \int_{1}^{2} \rho^{2} d \rho\right) \\
& =\frac{16}{3} \pi \log (2)-\left.\frac{2 \pi \rho^{3}}{9}\right|_{1} ^{2} \\
& =\frac{16}{3} \pi \log (2)-\frac{14 \pi}{9} \\
& =\frac{2 \pi}{3}\left(8 \log (2)-\frac{7}{3}\right)
\end{aligned}
$$

Problems

1. Find the area of the region enclosed by the ellipse with equation $x^{2}+4 y^{2}=4$.
2. Given $a>0$ and $b>0$, show that the area enclosed by the ellipse with equation

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

is $\pi a b$.
3. Find the volume of the region enclosed by the ellipsoid with equation

$$
\frac{x^{2}}{25}+y^{2}+\frac{z^{2}}{4}=1
$$

4. Given $a>0, b>0$, and $c>0$, show that the volume of the region enclosed by the ellipsoid

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

is $\frac{4}{3} \pi a b c$.
5. Find the polar coordinates for each of the following points given in Cartesian coordinates.
(a) $(1,1)$
(b) $(-2,3)$
(c) $(-1,3)$
(d) $(4,-4)$
6. Find the Cartesian coordinates for each of the following points given in polar coordinates.
(a) $(3,0)$
(b) $\left(2, \frac{5 \pi}{6}\right)$
(c) $(5, \pi)$
(d) $\left(4, \frac{4 \pi}{3}\right)$
7. Evaluate

$$
\iint_{D}\left(x^{2}+y^{2}\right) d x d y
$$

where D is the disk in \mathbb{R}^{2} of radius 2 centered at the origin.
8. Evaluate

$$
\iint_{D} \sin \left(x^{2}+y^{2}\right) d x d y
$$

where D is the disk in \mathbb{R}^{2} of radius 1 centered at the origin.
9. Evaluate

$$
\iint_{D} \frac{1}{x^{2}+y^{2}} d x d y
$$

where D is the region in the first quadrant of \mathbb{R}^{2} which lies between the circle with equation $x^{2}+y^{2}=1$ and the circle with equation $x^{2}+y^{2}=16$.
10. Evaluate

$$
\iint_{D} \log \left(x^{2}+y^{2}\right) d x d y
$$

where D is the region in \mathbb{R}^{2} which lies between the circle with equation $x^{2}+y^{2}=1$ and the circle with equation $x^{2}+y^{2}=4$.
11. Using polar coordinates, verify that the area of a circle of radius r is πr^{2}.
12. Let

$$
I=\int_{-\infty}^{\infty} e^{-\frac{x^{2}}{2}} d x
$$

(a) Show that

$$
I^{2}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{1}{2}\left(x^{2}+y^{2}\right)} d x d y
$$

(b) Show that

$$
I^{2}=\int_{0}^{\infty} \int_{0}^{2 \pi} r e^{-\frac{r^{2}}{2}} d \theta d r
$$

(c) Show that

$$
\int_{-\infty}^{\infty} e^{-\frac{x^{2}}{2}} d x=\sqrt{2 \pi}
$$

13. Find the spherical coordinates of the point with Cartesian coordinates $(-1,1,2)$.
14. Find the spherical coordinates of the point with Cartesian coordinates $(3,2,-1)$.
15. Find the Cartesian coordinates of the point with spherical coordinates $\left(2, \frac{3 \pi}{4}, \frac{2 \pi}{3}\right)$.
16. Find the Cartesian coordinates of the point with spherical coordinates $\left(5, \frac{5 \pi}{3}, \frac{\pi}{6}\right)$.
17. Evaluate

$$
\iiint\left(x^{2}+y^{2}+z^{2}\right) d x d y d z
$$

where D is the closed ball in \mathbb{R}^{3} of radius 2 centered at the origin.
18. Evaluate

$$
\iiint_{D} \frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}} d x d y d z
$$

where D is the region in \mathbb{R}^{3} between the two spheres with equations $x^{2}+y^{2}+z^{2}=4$ and $x^{2}+y^{2}+z^{2}=9$.
19. Evaluate

$$
\iiint_{D} \sin \left(\sqrt{x^{2}+y^{2}+z^{2}}\right) d x d y d z
$$

where D is the region in \mathbb{R}^{3} described by $x \geq 0, y \geq 0, z \geq 0$, and $x^{2}+y^{2}+z^{2} \leq 1$.
20. Evaluate

$$
\iiint_{D} e^{-\left(x^{2}+y^{2}+z^{2}\right)} d x d y d z
$$

where D is the closed ball in \mathbb{R}^{3} of radius 3 centered at the origin.
21. Let D be the region in \mathbb{R}^{3} described by $x^{2}+y^{2}+z^{2} \leq 1$ and $z \geq \sqrt{x^{2}+y^{2}}$.
(a) Explain why the spherical coordinate change of variables maps the region

$$
E=\left\{(\rho, \theta, \varphi): 0 \leq \rho \leq 1,0 \leq \theta \leq 2 \pi, 0 \leq \varphi \leq \frac{\pi}{4}\right\}
$$

onto D.
(b) Find the volume of D.
22. If a point P has Cartesian coordinates (x, y, z), then the cylindrical coordinates of P are (r, θ, z), where r and θ are the polar coordinates of (x, y). Show that

$$
\left|\operatorname{det} \frac{\partial(x, y, z)}{\partial(r, \theta, z)}\right|=r \text {. }
$$

23. Use cylindrical coordinates to evaluate

$$
\iint_{D} \sqrt{x^{2}+y^{2}} d x d y d z
$$

where D is the region in \mathbb{R}^{3} described by $1 \leq x^{2}+y^{2} \leq 4$ and $0 \leq z \leq 5$.
24. A drill with a bit with a radius of 1 centimeter is used to drill a hole through the center of a solid ball of radius 3 centimeters. What is the volume of the remaining solid?

25 . Let D be the set of all points in the intersection of the two solid cylinders in \mathbb{R}^{3} described by $x^{2}+y^{2} \leq 1$ and $x^{2}+z^{2} \leq 1$. Find the volume of D.

