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Section 3.6

Definite Integrals

We will first define the definite integral for a function f : R2 → R and later indicate how
the definition may be extended to functions of three or more variables.

Cartesian products

We will find the following notation useful. Given two sets of real numbers A and B, we
define the Cartesian product of A and B to be the set

A×B = {(x, y) : x ∈ A, y ∈ B}. (3.6.1)

For example, if A = {1, 2, 3} and B = {5, 6}, then

A×B = {(1, 5), (1, 6), (2, 5), (2, 6), (3, 5), (3, 6)}.

In particular, if a < b, c < d, A = [a, b], and B = [c, d], then A × B = [a, b] × [c, d] is the
closed rectangle

{(x, y) : a ≤ x ≤ b, c ≤ y ≤ d},

as shown in Figure 3.6.1.

a

c

d

b

Figure 3.6.1 The closed rectangle [a, b]× [c, d]

More generally, given real numbers ai < bi, i = 1, 2, 3, . . . , n, we may write

[a1, b1]× [a2, b2]× · · · [an, bn]

1 Copyright c© by Dan Sloughter 2001
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for the closed rectangle

{(x1, x2, . . . , xn) : ai ≤ xi ≤ bi, i = 1, 2, . . . , n}
and

(a1, b1)× (a2, b2)× · · · (an, bn)
for the open rectangle

{(x1, x2, . . . , xn) : ai < xi < bi, i = 1, 2, . . . , n}.

Definite integrals on rectangles
Given a < b and c < d, let

D = [a, b]× [c, d]
and suppose f : R2 → R is defined on all of D. Moreover, we suppose f is bounded on
D, that is, there exist constants m and M such that m ≤ f(x, y) ≤ M for all (x, y) in
D. In particular, the Extreme Value Theorem implies that f is bounded on D if f is
continuous on D. Our definition of the definite integral of f over the rectangle D will
follow the definition from one-variable calculus. Given positive integers m and n, we let P
be a partition of [a, b] into m intervals, that is, a set P = {x0, x1, . . . , xm} where

a = x0 < x1 < · · · < xm = b, (3.6.2)

and we let Q be a partition of [c, d] into n intervals, that is, a set Q = {y0, y1, . . . , yn}
where

c = y0 < y1 < · · · < yn = d. (3.6.3)
We will let P ×Q denote the partition of D into mn rectangles

Dij = [xi−1, xi]× [yj−1, yj ], (3.6.4)

where i = 1, 2, . . . ,m and j = 1, 2, . . . , n. Note that Dij has area ∆xi∆yj , where

∆xi = xi − xi−1 (3.6.5)

and
∆yj = yj − yj−1. (3.6.6)

An example is shown in Figure 3.6.2.

a

c

d

b

D42

Figure 3.6.2 A partition of a rectangle [a, b]× [c, d]
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Now let mij be the largest real number with the property that mij ≤ f(x, y) for all
(x, y) in Dij and Mij be the smallest real number with the property that f(x, y) ≤Mij for
all (x, y) in Dij . Note that if f is continuous on D, then mij is simply the minimum value of
f on Dij and Mij is the maximum value of f on Dij , both of which are guaranteed to exist
by the Extreme Value Theorem. If f is not continuous, our assumption that f is bounded
nevertheless guarantees the existence of the mij and Mij , although the justification for
this statement lies beyond the scope of this book.

We may now define the lower sum, L(f, P × Q), for f with respect to the partition
P ×Q by

L(f, P ×Q) =
m∑
i=1

n∑
j=1

mij∆xi∆yj (3.6.7)

and the upper sum, U(f, P ×Q), for f with respect to the partition P ×Q by

U(f, P ×Q) =
m∑
i=1

n∑
j=1

Mij∆xi∆yj . (3.6.8)

Geometrically, if f(x, y) ≥ 0 for all (x, y) in D and V is the volume of the region which
lies beneath the graph of f and above the rectangle D, then L(f, P ×Q) and U(f, P ×Q)
represent lower and upper bounds, respectively, for V . (See Figure 3.6.3 for an example
of one term of a lower sum). Moreover, we should expect that these bounds can be made
arbitrarily close to V using sufficiently fine partitions P and Q. In part this implies that we
may characterize V as the only real number which lies between L(f, P×Q) and U(f, P×Q)
for all choices of partitions P and Q. This is the basis for the following definition.

Definition Suppose f : R2 → R is bounded on the rectangle D = [a, b] × [c, d]. With
the notation as above, we say f is integrable on D if there exists a unique real number I
such that

L(f, P ×Q) ≤ I ≤ U(f, P ×Q) (3.6.9)

for all partitions P of [a, b] and Q of [c, d]. If f is integrable on D, we call I the definite
integral of f on D, which we denote

I =
∫ ∫

D

f(x, y)dxdy. (3.6.10)

Geometrically, if f(x, y) ≥ 0 for all (x, y) in D, we may think of the definite integral
of f on D as the volume of the region in R3 which lies beneath the graph of f and above
the rectangle D. Other interpretations include total mass of the rectangle D (if f(x, y)
represents the density of mass at the point (x, y)) and total electric charge of the rectangle
D (if f(x, y) represents the charge density at the point (x, y)).

Example Suppose f(x, y) = x2 + y2 and D = [0, 1]× [0, 3]. If we let

P = {0, 1
2
, 1}
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Figure 3.6.3 Graph of f(x, y) = x2 + y2 showing one term of a lower sum

and
Q = {0, 1, 2, 3},

then the minimum value of f on each rectangle of the partition P ×Q occurs at the lower
left-hand corner of the rectangle and the maximum value of f occurs at the upper right-
hand corner of the rectangle. See Figure 3.6.3 for a picture of one term of the lower sum.
Hence

L(f, P ×Q) = f(0, 0)× 1
2
× 1 + f

(
1
2
, 0
)
× 1

2
× 1 + f(0, 1)× 1

2
× 1

+ f

(
1
2
, 1
)
× 1

2
× 1 + f(0, 2)× 1

2
× 1 + f

(
1
2
, 2
)
× 1

2
× 1

= 0 +
1
8

+
1
2

+
5
8

+ 2 +
17
8

=
43
8

= 5.375

and

U(f, P ×Q) = f

(
1
2
, 1
)
× 1

2
× 1 + f(1, 1)× 1

2
× 1 + f

(
1
2
, 2
)
× 1

2
× 1

+ f(1, 2)× 1
2
× 1 + f

(
1
2
, 3
)
× 1

2
× 1 + f(1, 3)× 1

2
× 1
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=
5
8

+ 1 +
17
8

+
5
2

+
37
8

+ 5

=
127
8

= 15.875.

We will see below that the continuity of f implies that f is integrable on D, so we may
conclude that

5.375 ≤
∫ ∫

(x2 + y2)dxdy ≤ 15.875.

Example Suppose k is a constant and f(x, y) = k for all (x, y) in the rectangle D =
[a, b]× [c, d]. The for any partitions P = {x0, x1, . . . , xm} of [a, b] and Q = {y0, y1, . . . , yn}
of [c, d], mij = k = Mij for i = 1, 2, . . . ,m and j = 1, 2, . . . , n. Hence

L(f, P ×Q) = U(f, P ×Q)

=
m∑
i=1

n∑
j=1

k∆xi∆yj

= k
m∑
i=1

n∑
j=1

∆xi∆yj

= k × (area of D)
= k(b− a)(d− c).

Hence f is integrable and∫ ∫
D

f(x, y)dxdy =
∫ ∫

D

kdxdy = k(b− a)(d− c).

Of course, geometrically this result is saying that the volume of a box with height k and
base D is k times the area of D. In particular, if k = 1 we see that∫ ∫

D

dxdy = area of D.

Example If D = [1, 2]× [−1, 3], then∫
D

5dxdy = 5(2− 1)(3 + 1) = 20.

The properties of the definite integral stated in the following proposition follow easily
from the definition, although we will omit the somewhat technical details.

Proposition Suppose f : R2 → R and g : R2 → R are both integrable on the rectangle
D = [a, b]× [c, d] and k is a scalar constant. Then∫ ∫

D

(f(x, y) + g(x, y))dxdy =
∫ ∫

D

f(x, y)dxdy +
∫ ∫

D

g(x, y)dxdy, (3.6.11)
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D

kf(x, y)dxdy = k

∫ ∫
D

f(x, y)dxdy, (3.6.12)

and, if f(x, y) ≤ g(x, y) for all (x, y) in D,∫ ∫
D

f(x, y)dxdy ≤
∫ ∫

D

g(x, y)dxdy. (3.6.13)

Our definition does not provide a practical method for determining whether a given
function is integrable or not. A complete characterization of integrability is beyond the
scope of this text, but we shall find one simple condition very useful: if f is continuous
on an open set containing the rectangle D, then f is integrable on D. Although we will
not attempt a full proof of this result, the outline is as follows. If f is continuous on
D = [a, b] × [c, d] and we are given any ε > 0, then it is possible to find partitions P of
[a, b] and Q of [c, d] sufficiently fine to guarantee that if (x, y) and (u, v) are points in the
same rectangle Dij of the partition P ×Q of D, then

|f(x, y)− f(u, v)| < ε

(b− a)(d− c)
. (3.6.14)

(Note that this is not a direct consequence of the continuity of f , but follows from a
slightly deeper property of continuous functions on closed bounded sets known as uniform
continuity.) It follows that if mij is the minimum value and Mij is the maximum value of
f on Dij , then

U(f, P ×Q)− L(f, P ×Q) =
m∑
i=1

n∑
j=1

Mij∆xi∆yj −
m∑
i=1

n∑
j=1

mij∆xi∆yj

=
m∑
i=1

n∑
j=1

(Mij −mij)∆xi∆yj

<

m∑
i=1

n∑
j=1

ε

(b− a)(d− c)
∆xi∆yj

=
ε

(b− a)(d− c)

m∑
i=1

n∑
j=1

∆xi∆yj

=
ε

(b− a)(d− c)
(b− a)(d− c)

= ε.

(3.6.15)

It now follows that we may find upper and lower sums which are arbitrarily close, from
which follows the integrability of f .

Theorem If f is continuous on an open set containing the rectangle D, then f is inte-
grable on D.
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Figure 3.6.4 A slice of the region beneath f(x, y) = x2 + y2 with area α(2)

Example If f(x, y) = x2 + y2, then f is continuous on all of R2. Hence f is integrable
on D = [0, 1]× [0, 3].

Iterated integrals
Now suppose we have a rectangle D = [a, b]× [c, d] and a continuous function f : R2 → R
such that f(x, y) ≥ 0 for all (x, y) in D. Let

B = {(x, y, z) : (x, y) ∈ D, 0 ≤ z ≤ f(x, y)}. (3.6.16)

Then B is the region in R3 bounded below by D and above by the graph of f . If we let V
be the volume of B, then

V =
∫ ∫

D

f(x, y)dxdy. (3.6.17)

However, there is another approach to finding V . If, for every c ≤ y ≤ d, we let

α(y) =
∫ b

a

f(x, y)dx, (3.6.18)

then α(y) is the area of a slice of B cut by a plane orthogonal to both the xy-plane and
the yz-plane and passing through the point (0, y, 0) on the y-axis (see Figure 3.6.4 for an
example). If we let the partition Q = {y0, y1, . . . , yn} divide [c, d] into n intervals of equal
length ∆y, then we may approximate V by

n∑
j=1

α(yi)∆y. (3.6.19)
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That is, we may approximate V by slicing B into slabs of thickness ∆y perpendicular to the
yz-plane, and then summing approximations to the volume of each slab. As n increases,
this approximation should converge to V ; at the same time, since (3.6.19) is a right-hand
rule approximation to the definite integral of α over [c, d], the sum should converge to

∫ d

c

α(y)dy

as n increases. That is, we should have

V = lim
n→∞

n∑
j=1

α(yi)∆y =
∫ d

c

α(y)dy =
∫ d

c

(∫ b

a

f(x, y)dx

)
dy. (3.6.20)

Note that the expression on the right-hand side of (3.6.20) is not the definite integral of f
over D, but rather two successive integrals of one variable. Also, we could have reversed
our order and first integrated with respect to y and then integrated the result with respect
to x.

Definition Suppose f : R2 → R is defined on a rectangle D = [a, b]× [c, d]. The iterated
integrals of f over D are

∫ d

c

∫ b

a

f(x, y)dxdy =
∫ d

c

(∫ b

a

f(x, y)dx

)
dy (3.6.21)

and ∫ b

a

∫ d

c

f(x, y)dydx =
∫ b

a

(∫ d

c

f(x, y)dy

)
dx. (3.6.22)

In the situation of the preceding paragraph, we should expect the iterated integrals in
(3.6.21) and (3.6.22) to be equal since they should both equal V , the volume of the region
B. Moreover, since we also know that

V =
∫ ∫

D

f(x, y)dxdy,

the iterated integrals should both be equal to the definite integral of f over D. These
statements may in fact be verified as long as f is integrable on D and the iterated integrals
exist. In this case, iterated integrals provide a method of evaluating double integrals in
terms of integrals of a single variable (for which we may use the Fundamental Theorem of
Calculus).
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Figure 3.6.5 Region beneath f(x, y) = x2 + y2 over the rectangle [0, 1]× [0, 3]

Fubini’s Theorem (for rectangles) Suppose f is integrable over the rectangle D =
[a, b]× [c, d]. If ∫ d

c

∫ b

a

f(x, y)dxdy

exists, then ∫ ∫
D

f(x, y)dxdy =
∫ d

c

∫ b

a

f(x, y)dxdy. (3.6.23)

If ∫ b

a

∫ d

c

f(x, y)dydx

exists, then ∫ ∫
D

f(x, y)dxdy =
∫ b

a

∫ d

c

f(x, y)dxdy. (3.6.24)

Example To find the volume V of the region beneath the graph of f(x, y) = x2 + y2

and over the rectangle D = [0, 1]× [0, 3] (as shown in Figure 3.6.5), we compute

V =
∫ ∫

D

(x2 + y2)dxdy

=
∫ 3

0

∫ 1

0

(x2 + y2)dxdy
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=
∫ 3

0

(
x3

3
+ xy2

) ∣∣∣∣1
0

dy

=
∫ 3

0

(
1
3

+ y2

)
dy

=
(
y

3
+
y3

3

) ∣∣∣∣3
0

= 1 + 9
= 10.

We could also compute the iterated integral in the other order:

V =
∫ ∫

D

(x2 + y2)dxdy

=
∫ 1

0

∫ 3

0

(x2 + y2)dydx

=
∫ 1

0

(
x2y +

y3

3

) ∣∣∣∣3
0

dx

=
∫ 1

0

(3x2 + 9)dx

= (x3 + 9y)
∣∣1
0

= 1 + 9
= 10.

Example If D = [1, 2]× [0, 1], then∫ ∫
D

x2ydxdy =
∫ 2

1

∫ 1

0

x2ydydx =
∫ 2

1

x2y2

2

∣∣∣∣1
0

dx =
∫ 2

1

x2

2
dx =

x3

6

∣∣∣∣2
1

=
8
6
− 1

6
=

7
6
.

Definite integrals on other regions

Integrals over intervals suffice for most applications of functions of a single variable. How-
ever, for functions of two variables it is important to consider integrals on regions other
than rectangles. To extend our definition, consider a function f : R2 → R defined on a
bounded region D. Let D∗ be a rectangle containing D and, for any (x, y) in D∗, define

f∗(x, y) =
{
f(x, y), if (x, y) ∈ D,
0, if (x, y) /∈ D. (3.6.25)

In other words, f∗ is identical to f on D and 0 at all points of D∗ outside of D. Now if
f∗ is integrable on D∗, and since the the region where f∗ is 0 should contribute nothing
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Figure 3.6.6 Regions of Type I and Type II

to the value of the integral, it is reasonable to define the integral of f over D to be equal
to the integral of f∗ over D∗.

Definition Suppose f is defined on a bounded regionD of R2 and letD∗ be any rectangle
containing D. Define f∗ as in (3.6.25). We say f is integrable on D if f∗ is integrable on
D∗, in which case we define∫ ∫

D

f(x, y)dxdy =
∫ ∫

D∗
f∗(x, y)dxdy. (3.6.26)

Note that the integrability of f on a region D depends not only on the nature of f , but
on the region D as well. In particular, even if f is continuous on an open set containing D,
it may still turn out that f is not integrable on D because of the complicated nature of the
boundary of D. Fortunately, there are two basic types of regions which occur frequently
and to which our previous theorems generalize.

Definition We say a region D in R2 is of Type I if there exist real numbers a < b and
continuous functions α : R → R and β : R → R such that α(x) ≤ β(x) for all x in [a, b]
and

D = {(x, y) : a ≤ x ≤ b, α(x) ≤ y ≤ β(x)}. (3.6.27)

We say a region D in R2 is of Type II if there exist real numbers c < d and continuous
functions γ : R→ R and δ : R→ R such that γ(y) ≤ δ(y) for all y in [c, d] and

D = {(x, y) : c ≤ y ≤ d, γ(y) ≤ x ≤ δ(y)}. (3.6.28)

Figure 3.6.6 shows typical examples of regions of Type I and Type II.

Example If D is the triangle with vertices at (0, 0), (1, 0), and (1, 1), then

D = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ x}.

Hence D is a Type I region with α(x) = 0 and β(x) = x. Note that we also have

D = {(x, y) : 0 ≤ y ≤ 1, y ≤ x ≤ 1},

so D is also a Type II region with γ(y) = y and δ(y) = 1. See Figure 3.6.7.
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Figure 3.6.7 Two regions which are of both Type I and Type II

Example The closed disk

D = {(x, y) : x2 + y2 ≤ 1}

is both a region of Type I, with

D = {(x, y) : −1 ≤ x ≤ 1,−
√

1− x2 ≤ y ≤
√

1− x2},

and a region of Type II, with

D = {(x, y) : −1 ≤ y ≤ 1,−
√

1− y2 ≤ x ≤
√

1− x2}.

See Figure 3.6.7.

Example Let D be the region which lies beneath the graph of y = x2 and above the
interval [−1, 1] on the x-axis. Then

D = {(x, y) : −1 ≤ x ≤ 1, 0 ≤ y ≤ x2},

so D is a region of Type I. However, D is not a region of Type II. See Figure 3.6.8.

Theorem If D is a region of Type I or a region of Type II and f : R2 → R is continuous
on an open set containing D, then f is integrable on D.

Fubini’s Theorem (for regions of Type I and Type II) Suppose f : R2 → R is
integrable on the region D. If D is a region of Type I with

D = {(x, y) : a ≤ x ≤ b, α(x) ≤ y ≤ β(x)}

and the iterated integral ∫ b

a

∫ β(x)

α(x)

f(x, y)dydx
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Figure 3.6.8 A region which is of Type I but not of Type II

exists, then ∫ ∫
D

f(x, y)dxdy =
∫ b

a

∫ β(x)

α(x)

f(x, y)dydx. (3.6.29)

If D is a region of Type II with

D = {(x, y) : c ≤ y ≤ d, γ(y) ≤ x ≤ δ(y)}

and the iterated integral ∫ d

c

∫ δ(y)

γ(y)

f(x, y)dxdy

exists, then ∫ ∫
D

f(x, y)dxdy =
∫ d

c

∫ δ(y)

γ(y)

f(x, y)dydx. (3.6.30)

Example Let D be the triangle with vertices at (0, 0), (1, 0), and (1, 1), as in the example
above. Expressing D as a region of Type I, we have∫ ∫

D

xydxdy =
∫ 1

0

∫ x

0

xydydx =
∫ 1

0

xy2

2

∣∣∣∣x
0

dx =
∫ 1

0

x3

2
dx =

x4

8

∣∣∣∣1
0

=
1
8
.

Since D is also a region of Type II, we may evaluate the integral in the other order as well,
obtaining∫ ∫

D

xydxdy =
∫ 1

0

∫ 1

y

xydxdy =
∫ 1

0

x2y

2

∣∣∣∣1
y

dy =
∫ 1

0

(
y

2
− y3

2

)
dy =

(
y2

4
− y4

8

) ∣∣∣∣1
0

=
1
8
.
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Figure 3.6.9 The region D = {(x, y) : 0 ≤ x ≤ 1,
√
x ≤ y ≤ 1}

In the last example the choice of integration was not too important, with the first order
being perhaps slightly easier than the second. However, there are times when the choice
of the order of integration has a significant effect on the ease of integration.

Example Let D = {(x, y) : 0 ≤ x ≤ 1,
√
x ≤ y ≤ 1} (see Figure 3.6.9). Since D is both

of Type I and of Type II, we may evaluate∫ ∫
D

e−y
3
dxdy

either as ∫ 1

0

∫ 1

√
x

e−y
3
dydx

or as ∫ 1

0

∫ y2

0

e−y
3
dxdy.

The first of these two iterated integrals requires integrating g(y) = e−y
3
; however, we may

evaluate the second easily:∫ ∫
D

e−y
3
dxdy =

∫ 1

0

∫ y2

0

e−y
3
dxdy

=
∫ 1

0

xe−y
3
∣∣∣y2

0
dy

=
∫ 1

0

y2e−y
3
dy

= −1
3
e−y

3
∣∣∣∣1
0

=
1
3

(1− e−1).
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Figure 3.6.10 Region bounded by z = 4− x2 − y2 and the xy-plane

Example Let V be the volume of the region lying below the paraboloid P with equation
z = 4− x2 − y2 and above the xy-plane (see Figure 3.6.10). Since the surface P intersects
the xy-plane when

4− x2 − y2 = 0,

that is, when
x2 + y2 = 4,

V is the volume of the region bounded above by the graph of f(x, y) = 4 − x2 − y2 and
below by the region

D = {(x, y) : x2 + y2 ≤ 4}.

If we describe D as a Type I region, namely,

D = {(x, y) : −2 ≤ x ≤ 2,−
√

4− x2 ≤ y ≤
√

4− x2},

then we may compute

V =
∫ ∫

D

(4− x2 − y2)dxdy

=
∫ 2

−2

∫ √4−x2

−
√

4−x2
(4− x2 − y2)dydx

=
∫ 2

−2

(
4y − x2y − y3

3

) ∣∣∣∣
√

4−x2

−
√

4−x2

dx
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=
∫ 2

−2

(
8
√

4− x2 − 2x2
√

4− x2 − 2
3

(4− x2)
3
2

)
dx

= 2
∫ 2

−2

(
(4− x2)

√
4− x2 − 1

3
(4− x2)

3
2

)
dx

=
4
3

∫ 2

−2

(4− x2)
3
2 dx.

Using the substitution x = 2 sin(θ), we have dx = 2 cos(θ)dθ, and so

V =
4
3

∫ 2

−2

(4− x2)
3
2 dx

=
4
3

∫ π
2

−π2
(4− 4 sin2(θ))

3
2 2 cos(θ)dθ

=
64
3

∫ π
2

−π2
cos4(θ)dθ

=
64
3

∫ π
2

−π2

(
1 + cos(2θ)

2

)2

dθ

=
16
3

∫ π
2

−π2
(1 + 2 cos(2θ) + cos2(2θ))dθ

=
16
3

(
θ
∣∣π2
−π2

+ sin(2θ)
∣∣π2
−π2

+
∫ π

2

−π2

1 + cos(4θ)
2

dθ

)

=
16
3

(
π +

θ

2

∣∣∣∣π2
−π2

+
1
8

sin(4θ)
∣∣∣∣π2
−π2

)

=
16
3

(
π +

π

2

)
= 8π.

Integrals of functions of three or more variables

We will now sketch how to extend the definition of the definite integral to higher dimen-
sions. Suppose f : Rn → R is bounded on an n-dimensional closed rectangle

D = [a1, b1]× [a2, b2]× · · · [an, bn].

Let P1, P2, . . . , Pn partition the intervals [a1, b1], [a2, b2], . . . , [an, bn] into m1, m2, . . . ,
mn, respectively, intervals, and let P1×P2×· · ·×Pn represent the corresponding partition
of D into m1m2 · · ·mn n-dimensional closed rectangles Di1i2···in . If mi1i2···in is the largest
real number such that mi1i2···in ≤ f(x) for all x in Di1i2···in and Mi1i2···in is the smallest
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real number such that f(x) ≤Mi1i2···in for all x in Di1i2···in , then we may define the lower
sum

L(f, P1 × P2 × · · · × Pn) =
m1∑
i1=1

m2∑
i2

· · ·
mn∑
in=1

mi1i2···in∆x1i1∆x2i2 · · ·∆xnin (3.6.31)

and the upper sum

U(f, P1 × P2 × · · · × Pn) =
m1∑
i1=1

m2∑
i2

· · ·
mn∑
in=1

Mi1i2···in∆x1i1∆x2i2 · · ·∆xnin , (3.6.32)

where ∆xjk is the length of the kth interval of the partition Pj . We then say f is integrable
on D if there exists a unique real number I with the property that

L(f, P1 × P2 × · · · × Pn) ≤ I ≤ U(f, P1 × P2 × · · · × Pn) (3.6.33)

for all choices of partitions P1, P2, . . . , Pn and we write

I =
∫
· · ·
∫ ∫

D

f(x1, x2, . . . , xn)dx1dx2 · · · dxn, (3.6.34)

or
I =

∫
· · ·
∫ ∫

D

f(x)dx, (3.6.35)

for the definite integral of f on D.
We may now generalize the definition of the integral to more general regions in the

same manner as above. Moreover, our integrability theorem and Fubini’s theorem, with
appropriate changes, hold as well. When n = 3, we may interpret∫ ∫ ∫

D

f(x, y, z)dxdydz (3.6.36)

to be the total mass of D if f(x, y, z) represents the density of mass at (x, y, z), or the
total electric charge of D if f(x, y, z) represents the electric charge density at (x, y, z). For
any value of n we may interpret∫

· · ·
∫ ∫

D

dx1dx2 · · · dxn (3.6.37)

to be the n-dimensional volume of D. We will not go into further details, preferring to
illustrate with examples.

Example Suppose D is the closed rectangle

D = {(x, y, z, t) : 0 ≤ x ≤ 1,−1 ≤ y ≤ 1,−2 ≤ z ≤ 2, 0 ≤ t ≤ 2}
= [0, 1]× [−1, 1]× [−2, 2]× [0, 2].
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Then∫ ∫ ∫ ∫
D

(x2 + y2 + z2 − t2)dxdydzdt =
∫ 1

0

∫ 1

−1

∫ 2

−2

∫ 2

0

(x2 + y2 + z2 − t2)dtdzdydx

=
∫ 1

0

∫ 1

−1

∫ 2

−2

(
x2t+ y2t+ z2t− t3

3

) ∣∣∣∣2
0

dzdydx

=
∫ 1

0

∫ 1

−1

∫ 2

−2

(
2x2 + 2y2 + 2z2 − 8

3

)
dzdxdy

=
∫ 1

0

∫ 1

−1

(
2x2z + 2y2z +

2z3

3
− 8z

3

) ∣∣∣∣2
−2

dydx

=
∫ 1

0

∫ 1

−1

(
8x2 + 8y2 +

32
3
− 32

3

)
dydx

=
∫ 1

0

(
8x2y +

8y2

3

) ∣∣∣∣1
−1

dx

=
∫ 1

0

(
16x2 +

16
3

)
dx

=
(

16x3

3
+

16x
3

) ∣∣∣∣1
0

=
32
3
.

Example Let D be the region in R3 bounded by the the three coordinate planes and
the plane P with equation z = 1− x− y (see Figure 3.6.11). Suppose we wish to evaluate∫ ∫ ∫

D

xyzdxdydz.

Note that the side of D which lies in the xy-plane, that is, the plane z = 0, is a triangle
with vertices at (0, 0, 0), (1, 0, 0), and (0, 1, 0). Or, strictly in terms of x and y coordinates,
we may describe this face as the triangle in the first quadrant bounded by the line y = 1−x
(see Figure 3.6.11). Hence x varies from 0 to 1, and, for each value of x, y varies from 0
to 1− x. Finally, once we have fixed a values for x and y, z varies from 0 up to P , that is,
to 1− x− y. Hence we have∫ ∫ ∫

D

xyzdxdydz =
∫ 1

0

∫ 1−x

0

∫ 1−x−y

0

xyzdzdydx

=
∫ 1

0

∫ 1−x

0

xyz2

2

∣∣∣∣1−x−y
0

dydx

=
∫ 1

0

∫ 1−x

0

xy(1− x− y)2

2
dydx
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(0, 1, 0)

(0, 0, 1)

(1, 0, 0)

z = 1 − x − y

x

z

(0, 1)

(1, 0)

y = 1 − x

x

y

y

Figure 3.6.11 Region bounded by the coordinate planes and the plane z = 1− x− y

=
1
2

∫ 1

0

∫ 1−x

0

(xy − 2x2y + x3y + 2x2y2 + xy3)dydx

=
1
2

∫ 1

0

(
xy2

2
− 2x2y2 +

x3y2

2
+

2x2y3

3
+
xy4

4

) ∣∣∣∣1−x
0

dx

=
1
2

∫ 1

0

(
3x
4
− 10x2

3
+

9x3

2
− 2x4 +

x5

12

)
dx

=
1
2

∫ 1

0

(
3x2

8
− 10x3

9
+

9x4

8
− 2x5

5
+
x6

72

) ∣∣∣∣1
0

=
1
2

(
3
8
− 10

9
+

9
8
− 2

5
+

1
72

)
=

1
720

.

Example Let V be the volume of the region D in R3 bounded by the paraboloids with
equations z = 10 − x2 − y2 and z = x2 + y2 − 8 (see Figure 3.6.12). We will find V by
evaluating

V =
∫ ∫ ∫

D

dxdydz.

To set up an iterated integral, we first note that the paraboloid z = 10 − x2 − y2 opens
downward about the z-axis and the paraboloid z = x2 + y2 − 8 opens upward about the z
axis. The two paraboloids intersect when

10− x2 − y2 = x2 + y2 − 8,
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Figure 3.6.12 Region bounded by z = 10− x2 − y2 and z = x2 + y2 − 8

that is, when

x2 + y2 = 9.

Now we may describe the region in the xy-plane described by x2 + y2 ≤ 9 as the set of
points (x, y) for which −3 ≤ x ≤ 3 and, for every such fixed x,

−
√

3− x2 ≤ y ≤
√

3− x2.

Moreover, once we have fixed x and y so that (x, y) is inside the circle x2 + y2 = 9, then
(x, y, z) is in D provided x2 + y2 − 8 ≤ z ≤ 10− x2 − y2. Hence we have
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V =
∫ ∫ ∫

D

dxdydz

=
∫ 3

−3

∫ √9−x2

−
√

9−x2

∫ 10−x2−y2

x2+y2−8

dzdydx

=
∫ 3

−3

∫ √9−x2

−
√

9−x2
z
∣∣10−x2−y2

x2+y2−8
dydx

=
∫ 3

−3

∫ √9−x2

−
√

9−x2
(18− 2x2 − 2y2)dydx

=
∫ 3

−3

(
18y − 2x2y − 2y3

3

) ∣∣∣∣
√

9−x2

−
√

9−x2

dx

=
∫ 3

−3

(
36
√

9− x2 − 4x2
√

9− x2 − 4
3

(9− x2)
3
2

)
dx

=
∫ 3

−3

√
9− x2

(
36− 4x2 − 4

3
(9− x2)

)
dx

=
8
3

∫ 3

−3

(9− x2)
3
2 dx.

Using the substitution x = 3 sin(θ), we have dx = 3 cos(θ)dθ, and so

V =
8
3

∫ 3

−3

(9− x2)
3
2 dx

=
8
3

∫ π
2

−π2
(9− 9 sin2(x))

3
2 (3 cos(θ))dθ

= 216
∫ π

2

−π2
cos4(θ)dθ

= 216
∫ π

2

−π2

(
1 + cos(2θ)

2

)2

dθ

= 54
∫ π

2

−π2
(1 + 2 cos(2θ) + cos2(2θ))dθ

= 54

(
θ
∣∣π2
−π2

+ sin(2θ)
∣∣π2
−π2

+
∫ π

2

−π2

1 + cos(4θ)
2

dθ

)

= 54π + 27θ
∣∣π2
−π2

+
27
4

sin(4θ)
∣∣π2
−π2

= 81π.
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Problems

1. Evaluate each of the following iterated integrals.

(a)
∫ 3

1

∫ 2

0

3xy2dydx (b)
∫ π

2

0

∫ π

0

4x sin(x+ y)dydx

(c)
∫ 2

−2

∫ 1

−1

(4− x2y2)dxdy (d)
∫ 2

0

∫ 1

0

ex+ydxdy

2. Evaluate the following definite integrals over the given rectangles.

(a)
∫ ∫

D

(y2 − 2xy)dxdy, D = [0, 2]× [0, 1] (b)
∫ ∫

D

1
(x+ y)2

dxdy, D = [1, 2]× [1, 3]

(c)
∫ ∫

D

ye−xdxdy, D = [0, 1]× [0, 2] (d)
∫ ∫

D

1
2x+ y

dxdy, D = [1, 2]× [0, 1]

3. For each of the following, evaluate the iterated integrals and sketch the region of
integration.

(a)
∫ 2

0

∫ y

0

(xy2 − x2)dxdy (b)
∫ 1

0

∫ x2

x4
(x2 + y2)dydx

(c)
∫ 2

0

∫ √4−x2

0

(4− x2 − y2)dydx (d)
∫ 1

0

∫ y2

0

xye−x−ydxdy

4. Find the volume of the region beneath the graph of f(x, y) = 2 + x2 + y2 and above
the rectangle D = [−1, 1]× [−2, 2].

5. Find the volume of the region beneath the graph of f(x, y) = 4 − x2 + y2 and above
the region D = {(x, y) : 0 ≤ x ≤ 2,−x ≤ y ≤ x}. Sketch the region D.

6. Evaluate
∫ ∫

D

xydxdy, where D is the region bounded by the x-axis, the y-axis, and

the line y = 2− x.

7. Evaluate
∫ ∫

D

e−x
2
dxdy where D = {(x, y) : 0 ≤ y ≤ 1, y ≤ x ≤ 1}.

8. Find the volume of the region in R3 described by x ≥ 0, y ≥ 0, and 0 ≤ z ≤ 4−2y−4x.

9. Find the volume of the region in R3 lying above the xy-plane and below the surface
with equation z = 16− x2 − y2.

10. Find the volume of the region in R3 lying above the xy-plane and below the surface
with equation z = 4− 2x2 − y2.

11. Evaluate each of the following iterated integrals.

(a)
∫ 2

1

∫ 3

0

∫ 2

−2

(4− x2 − z2)dydxdz (b)
∫ 3

−2

∫ 2

−1

∫ 2

0

3xyzdxdydz

(c)
∫ 4

0

∫ x

0

∫ x+y

0

(x2 − yz)dzdydx (d)
∫ 1

0

∫ x

0

∫ x+y

0

∫ x+y+z

0

wdwdzdydx
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12. Find the volume of the region in R3 bounded by the paraboloids with equations z =
3− x2 − y2 and z = x2 + y2 − 5.

13. Evaluate
∫ ∫ ∫

D

xydxdydz, where D is the region bounded by the xy-plane, the yz-

plane, the xz-plane, and the plane with equation z = 4− x− y.

14. If f(x, y, z) represents the density of mass at the point (x, y, z) of an object occupying
a region D in R3, then ∫ ∫ ∫

D

f(x, y, z)dxdydz

is the total mass of the object and the point (x̄, ȳ, z̄), where

x̄ =
1
m

∫ ∫ ∫
D

xf(x, y, z)dxdydz,

ȳ =
1
m

∫ ∫ ∫
D

yf(x, y, z)dxdydz,

and
z̄ =

1
m

∫ ∫ ∫
D

zf(x, y, z)dxdydz,

is called the center of mass of the object. Suppose D is the region bounded by the
planes x = 0, y = 0, z = 0, and z = 4− x− 2y.
(a) Find the total mass and center of mass for an object occupying the region D with

mass density given by f(x, y, z) = 1.
(b) Find the total mass and center of mass for an object occupying the region D with

mass density given by f(x, y, z) = z.

15. If X and Y are points chosen at random from the interval [0, 1], then the probability

that (X,Y ) lies in a subset D of the unit square [0, 1]× [0, 1] is
∫ ∫

D

dxdy.

(a) Find the probability that X ≤ Y .
(b) Find the probability that X + Y ≤ 1.

(c) Find the probability that XY ≥ 1
2

.

16. If X, Y , and Z are points chosen at random from the interval [0, 1], then the probability

that (X,Y, Z) lies in a subset D of the unit cube [0, 1]× [0, 1]× [0, 1] is
∫ ∫ ∫

D

dxdydz.

(a) Find the probability that X ≤ Y ≤ Z.
(b) Find the probability that X + Y + Z ≤ 1.


