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Extreme Values

After a few preliminary results and definitions, we will apply our work from the previous
sections to the problem of finding maximum and minimum values of scalar-valued functions
of several variables. The story here parallels to a great extent the story from one-variable
calculus, with the inevitable twists and turns due to the presence of additional variables.
We will begin with a definition very similar to the analogous definition for functions of a
single variable.

The Extreme Value Theorem

Definition Suppose f : Rn → R is defined on a set S. We say f has a maximum value
of M at c if f(c) = M and M ≥ f(x) for all x in S. We say f has a minimum value of m
at c if f(c) = m and m ≤ f(x) for all x in S.

The maximum and minimum values of the previous definition are sometimes referred
to as global maximum and minimum values in order to distinguish them from the local
maximum and minimum values of the next definition.

Definition Suppose f : Rn → R is defined on a open set U . We say f has a local
maximum value of M at c if f(c) = M and M ≥ f(x) for all x in Bn(c, r) for some r > 0.
We say f has a local minimum value of m at c if f(c) = m and m ≤ f(x) for all x in
Bn(c, r) for some r > 0.

We will say extreme value, or global extreme value, when referring to a value of f
which is either a global maximum or a global minimum value, and local extreme value
when referring to a value which is either a local maximum or a local minimum value.

In one-variable calculus, the Extreme Value Theorem, the statement that every con-
tinuous function on a finite closed interval has a maximum and a minimum value, was
extremely useful in searching for extreme values. There is a similar result for our current
situation, but first we need the following definition.

Definition We say a set S in Rn is bounded if there exists an r > 0 such that S is
contained in the open ball Bn(0, r).

Equivalently, a set S is bounded as long as there is a fixed distance r such that no
point in S is farther away from the origin than r.

Example Any open or closed ball in Rn is a bounded set.

Example The infinite rectangle

{(x, y) : 1 < x < 3,−∞ < y <∞}
is not bounded.
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Extreme Value Theorem Suppose f : Rn → R is continuous on an open set U . If S
is a closed and bounded subset of U , than f has a maximum value and a minimum value
on S.

We leave the justification of this theorem for a more advanced course.
Our work now is to find criteria for locating candidates for points where local extreme

values might occur, and then to classify these points once we have found them. To begin,
suppose we know f : Rn → R is differentiable on an open set U and that it has a local
extreme value at c. Then for any unit vector u, the function g : R → R defined by
g(t) = f(c+ tu) must have an extreme value at t = 0. Hence, from a result in one-variable
calculus, we must have

0 = g′(0) = Duf(c) = ∇f(c) · u.

Since u was an arbitrary unit vector in Rn, we have, in particular,

0 = ∇f(c) · ek =
∂

∂xi
f(c)

for i = 1, 2, · · · , n. That is, we must have ∇f(c) = 0. Note that, by itself, ∇f(c) = 0 only
says that the slope of the graph of f is 0 in the direction of the standard basis vectors, but
this in fact implies that the slope is 0 in all directions because Duf(c) = ∇f(c) ·u for any
unit vector u.

Theorem If f : Rn → R is differentiable on an open set U and has a local extreme value
at c, then ∇f(c) = 0.

Definition If f : Rn → R is differentiable at c and ∇f(c) = 0, then we call c a critical
point of f . We call a point c at which f is not differentiable a singular point of f .

Recall that to find the extreme values of a continuous function f : R→ R on a closed
interval, we need only to evaluate f at all critical and singular points inside the interval
as well as at the endpoints of the interval, and then inspect these values to identify the
largest and smallest. The story is similar in the situation of a function f : Rn → R which
is defined on a closed and bounded set S and is continuous on some open set containing
S, except instead of having endpoints to consider, we have the entire boundary of S to
consider.

Definition Let S be a set in Rn. We call a point a in Rn a boundary point of S if for
every r > 0, the open ball Bn(a, r) contains both points in S and points outside of S. We
call the set of all boundary points of S the boundary of S.

Example The boundary of the closed set

B̄2((0, 0), 3) = {(x, y) : x2 + y2 ≤ 9}

is the circle
S1((0, 0), 3) = {(x, y) : x2 + y2 = 9}.

Example In general, the boundary of the closed ball B̄n(a, r) is the sphere Sn−1(a, r).
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Example The boundary of the closed rectangle

R = {(x, y) : 1 ≤ x ≤ 3, 2 ≤ y ≤ 5}

consists of the line segments from (1, 2) to (3, 2), (3, 2) to (3, 5), (3, 5) to (1, 5), and (1, 5)
to (1, 2).

Example Suppose we wish to find the global extreme values for the function f(x, y) =
x2 + y2 on the closed set

D = {(x, y) : x2 + 4y2 ≤ 4}.

We first find all the critical and singular points. Now

∇f(x, y) = (2x, 2y),

so
∇f(x, y) = (0, 0)

if and only if
2x = 0,
2y = 0.

Hence the only critical point is (0, 0). There are no singular points, but we must consider
the boundary of S, the ellipse

B = {(x, y) : x2 + 4y2 = 4}.

Now we may use
ϕ(t) = (2 cos(t), sin(t)),

0 ≤ t ≤ 2π, to parametrize B. It follows that any extreme value of f occurring on B will
also be an extreme value of

g(t) = f(ϕ(t))
= f(2 cos(t), sin(t))

= 4 cos2(t) + sin2(t)

= 4 cos2(t) + (1− cos2(t))

= 3 cos2(t) + 1

on the closed interval [0, 2π]. Now

g′(t) = −6 cos(t) sin(t),

so the critical points of g occur at points t in (0, 2π) where either cos(t) = 0 or sin(t) = 0.
Hence the critical points of g are t = π

2 , t = π, and t = 3π
2 . Moreover, we need to consider

the endpoints t = 0 and t = 2π. Hence we have four more candidates for the location
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Figure 3.5.1 Graph of f(x, y) = x2 + y2 on D = {(x, y) : x2 + 4y2 ≤ 4}

of extreme values, namely, ϕ(0) = ϕ(2π) = (2, 0), ϕ
(
π
2

)
= (0, 1), ϕ(π) = (−2, 0), and

ϕ
(

3π
2

)
= (0,−1). Evaluating f at these five points, we have

f(0, 0) = 0,

f(2, 0) = 4,

f(0, 1) = 1,

f(−2, 0) = 4,

and
f(0,−1) = 1.

Comparing these values, we see that f has a maximum value of 4 at (2, 0) and (−2, 0) and
a minimum value of 0 at (0, 0). See Figure 3.5.1 for the graph of f on the set D.

As the previous example shows, dealing with the boundary of a region can require a
significant amount of work. In this example we were helped by the fact that the boundary
was one-dimensional and was easily parametrized. This is not always the case. For exam-
ple, the boundary of the closed ball B̄3((0, 0, 0), 1) in R3 is the sphere S2((0, 0, 0), 1) with
equation

x2 + y2 + z2 = 1,

a two-dimensional surface. We shall see in Chapter 4 that it is possible to parametrize such
surfaces, but that would still leave us with a two-dimensional problem. We will return to
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this problem later in this section when we present a much more elegant solution based on
our knowledge of level sets and gradient vectors.

Finding local extrema

For now we will turn our attention to identifying local extreme values. Recall from one-
variable calculus that one of the most useful ways to identify a local extreme value is
through the second derivative test. That is, if c is a critical point of ϕ : R → R, then
ϕ′′(c) > 0 implies that ϕ has a local minimum at c and ϕ′′(c) < 0 implies ϕ has a local
maximum at c. Taylor’s theorem provides an easy way to see why this is so. For example,
suppose c is a critical point of ϕ, ϕ′′ is continuous on an open interval containing c, and
ϕ′′(c) > 0. Then there is an interval I = (c − r, c + r), r > 0, such that ϕ′′ is continuous
on I and ϕ′′(t) > 0 for all t in I. By Taylor’s theorem, for any h with |h| < r, there is a
number s between c and c+ h such that

ϕ(c+ h) = ϕ(c) + ϕ′(c)h+
1
2
ϕ′′(s)h2 = ϕ(c) +

1
2
ϕ′′(s)h2 > ϕ(c), (3.5.1)

where we have used the fact that ϕ′(c) = 0 since c is a critical point of ϕ. Hence ϕ(c) is a
local minimum value of ϕ.

Similar considerations lead to a second derivative test for a function f : Rn → R.
Suppose c is a critical point of f , f is C2 on an open set containing c, and Hf(c) is
positive definite. Let Bn(c, r), r > 0, be an open ball on which f is C2 and Hf(c) is
positive definite. Then, by the version of Taylor’s theorem in Section 3.4, for any h with
‖h‖ < r, there is a number s between 0 and 1 such that

f(c+h) = f(c)+∇f(c) ·h+
1
2
hTHf(c+sh)h = f(c)+

1
2
hTHf(c+sh)h > f(c), (3.5.2)

where ∇f(c) = 0 since c is a critical point of f , and the final inequality follows from
the assumption that Hf(x) is positive definite for x in Bn(c, r). Hence f(c) is a local
minimum value of f . The same argument shows that if Hf(c) is negative definite, then
f(c) is a local maximum value of f . If Hf(c) is indefinite, then there will be arbitrarily
small h for which

1
2
hTHf(c + sh)h > 0

and arbitrarily small h for which

1
2
hTHf(c + sh)h < 0.

Hence there will be arbitrarily small h for which f(c + h) > f(c) and arbitrarily small
h for which f(c + h) < f(c). In this case, f(c) is neither a local minimum nor a local
maximum. In this case, we call c a saddle point. Finally, if Hf(c) is nondefinite, then
we do not have enough information to classify the critical point. We may now state the
second derivative test.
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Second derivative test Suppose f : Rn → R is C2 on an open set U . If c is a critical
point of f in U , then f(c)is a local minimum value of f if Hf(c) is positive definite, f(c) is
a local maximum value of f if Hf(c) is negative definite, and c is a saddle point if Hf(c)
is indefinite. If Hf(c) is nondefinite, then more information is needed in order to classify
c.

The next example gives an indication for the source of the term saddle point.

Example To find the local extreme values of f(x, y) = x2 − y2, we begin by finding

∇f(x, y) = (2x,−2y).

Now
∇f(x, y) = (0, 0)

if and only if
2x = 0,
−2y = 0,

which occurs if and only if x = 0 and y = 0. Thus f has the single critical point (0, 0).
Now

Hf(x, y) =
[

2 0
0 −2

]
,

so

Hf(0, 0) =
[

2 0
0 −2

]
.

Thus
det(Hf(0, 0)) = (2)(−2) = −4 < 0.

Hence Hf(0, 0) is indefinite and so, by the second derivative test, (0, 0) is a saddle point.
Looking at the graph of f in Figure 3.5.2, we can see the reason for this: since f(x, 0) = x2

and f(0, y) = −y2, the slice of the graph of f above the x-axis is a parabola opening
upward while the slice of the graph of f above the y-axis is a parabola opening downward.

Example Consider f(x, y) = xye−(x2+y2). Then

∇f(x, y) = e−(x2+y2)(y − 2x2y, x− 2xy2).

Hence, since e−(x2+y2) > 0 for all (x, y),

∇f(x, y) = (0, 0)

if and only if
y − 2x2y = 0,

x− 2xy2 = 0,
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Figure 3.5.2 Graph of f(x, y) = x2 − y2

which occurs if and only if
y(1− 2x2) = 0,

x(1− 2y2) = 0.

Now the first equation is satisfied if either y = 0 or 1− 2x2 = 0. If y = 0, then the second
equation becomes x = 0, so (0, 0) is a critical point. If 1− 2x2 = 0, then either x = − 1√

2

or x = 1√
2
. For either of these values of x, the second equation is satisfied if and only

if 1 − 2y2 = 0, that is, y = − 1√
2

or y = 1√
2
. Hence we have four more critical points:(

− 1√
2
,− 1√

2

)
,
(
− 1√

2
, 1√

2

)
,
(

1√
2
,− 1√

2

)
, and

(
1√
2
, 1√

2

)
. Now

Hf(x, y) = e−(x2+y2)

[
4x3y − 6xy 4x2y2 − 2x2 − 2y2 + 1

4x2y2 − 2x2 − 2y2 + 1 4y3x− 6xy

]
,

so

Hf(0, 0) =
[

0 1
1 0

]
,

Hf

(
− 1√

2
,− 1√

2

)
= Hf

(
1√
2
,

1√
2

)
= e−1

[
−2 0

0 −2

]
,
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Figure 3.5.3 Graph of f(x, y) = xye−(x2+y2)

and

Hf

(
− 1√

2
,

1√
2

)
= Hf

(
1√
2
,− 1√

2

)
= e−1

[
2 0
0 2

]
.

Since

det
[

0 1
1 0

]
= −1 < 0,

det
[
−2e−1 0

0 −2e−1

]
= 4e−2 > 0,

and

det
[

2e−1 0
0 2e−1

]
= 4e−2 > 0,

we see that Hf(0, 0) is indefinite, Hf
(
− 1√

2
,− 1√

2

)
and Hf

(
1√
2
, 1√

2

)
are negative defi-

nite, and Hf
(
− 1√

2
, 1√

2

)
and Hf

(
− 1√

2
, 1√

2

)
are positive definite. Thus (0, 0) is a saddle

point of f , f has local maximums of 1
2e
−1 at both

(
− 1√

2
,− 1√

2

)
and

(
1√
2
, 1√

2

)
, and local

minimums of − 1
2e
−1 at

(
− 1√

2
, 1√

2

)
and

(
1√
2
,− 1√

2

)
.See Figure 3.5.3.

Finding global extrema
The graph of f(x, y) = xye−(x2+y2) in Figure 3.5.3 suggests that local extreme values
found in the previous example are in fact global extreme values for f on all of R2. We may
verify that this in fact the case as follows. First note that, since

lim
r→∞

r2e−r
2

= 0,
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we may choose R large enough so that

r2e−r
2
<

1
2
e−1

whenever r ≥ R. Now for any point (x, y) with ‖(x, y)‖ = r ≥ R we have

|f(x, y)| = |xye−(x2+y2)| = |x||y|e−(x2+y2) ≤ r2e−r
2
<

1
2
e−1.

Hence f(x, y) is between − 1
2e
−1 and 1

2e
−1 for all points (x, y) outside of the closed disk

D = B̄2((0, 0), R). Moreover, since f(x, y) is between − 1
2e
−1 and 1

2e
−1 for all points (x, y)

on the boundary of D, f has a minimum value of − 1
2e
−1 and a maximum value of 1

2e
−1

on D. Hence these values are actually the global extreme values of f on all of R2.

Example A farmer wishes to build a rectangular storage bin, without a top, with a
volume of 500 cubic meters using the least amount of material possible. If we let x and y
be the dimensions of the base of the bin and z be the height, all measured in meters, then
the farmer wishes to minimize the surface area of the bin, given by

S = xy + 2xz + 2yz, (3.5.3)

subject to the constraint on the volume, namely,

500 = xyz.

Solving for z in the latter expression and substituting in to (3.5.3), we have

S = xy + 2x
(

500
xy

)
+ 2y

(
500
xy

)
= xy +

1000
y

+
1000
x

.

This is the function we need to minimize on the infinite open rectangle

R = {(x, y) : x > 0, y > 0}.

Now
∂S

∂x
= y − 1000

x2

and
∂S

∂y
= x− 1000

y2

so to find the critical points of S we need to solve

y − 1000
x2

= 0,

x− 1000
y2

= 0.
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Solving for y in the first of these, we have

y =
1000
x2

,

which, when substituted into the second, gives us

x− x4

1000
= 0.

Hence we want

x

(
1− x3

1000

)
= 0,

from which it follows that either x = 0 or x = 10. Since the first of these will not give us
a point in R, we have x = 10 and

y =
1000
102

= 10.

Thus the only critical point is (10, 10). Now

HS(x, y) =

 2000
x3

1

1
2000
y3

 ,
so

HS(10, 10) =
[

2 1
1 2

]
.

Thus
det(HS(10, 10)) = 3,

and so HS(10, 10) is positive definite. This shows that S has a local minimum of

S
∣∣
x=10,y=10

= (10)(10) +
1000
10

+
1000
10

= 300

at (x, y) = (10, 10). To show that this is actually the global minimum value of S, we
proceed as follows. Let D be the closed rectangle

D = {(x, y) : 1 ≤ x ≤ 400, 1 ≤ y ≤ 400}.

Now if 0 < x ≤ 1, then
1000
x
≥ 1000,

and so S > 300. Similarly, if 0 < y ≤ 1, then S > 300. Moreover, if x ≥ 400 and y ≥ 1,
then xy ≥ 400, and so S > 300. Similarly, if y ≥ 400 and x ≥ 1, then S > 300. Hence
S > 300 for all (x, y) outside of D and for all (x, y) on the boundary of D. Hence S has a
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Figure 3.5.4 Graph of S = xy +
1000
x

+
1000
y

global minimum of 300 on D, which, from the preceding observations, must in fact be the
global minimum of S on all of R. See the graph of S in Figure 3.5.4. Finally, when x = 10
and y = 10, we have

z =
500

(10)(10)
= 5,

so the farmer should build her bin to have a base of 10 meters by 10 meters and a height
of 5 meters.

Lagrange multipliers

This last example has much in common with our first example in that they both involve
finding extreme values of a function restricted to a lower-dimensional subset. In our first
example, we had to find the extreme values of f(x, y) = x2 + y2 restricted to the one-
dimensional ellipse with equation x2 + 4y2 = 4; in the example we just finished, we had
to find the minimum value of S = xy+ 2xz + 2yz, a function of three variables, restricted
to the two-dimensional surface defined by the equation xyz = 500. Although they were
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similar, we approached these problems somewhat differently. In the first, we parametrized
the ellipse and then maximized the composition of f with this parametrization; in the
latter, we solved for z in terms of x and y and then substituted into the formula for S to
make S effectively a function of two variables. Now we will describe a general approach
which applies to both situations. Often, but not always, this method is easier to apply
then the other two techniques. In practice, one tries to select the method that will yield
an answer with the least resistance.

For the general case, consider two differentiable functions, f : Rn → R and g : Rn → R,
and suppose we wish to find the extreme values of f on the level set S of g determined by
the constraint g(x) = 0. If f has an extreme value at a point c on S, then f(c) must be an
extreme value of f along any curve passing through c. Thus if ϕ : R → Rn parametrizes
a curve in S with ϕ(b) = c, then the function h(t) = f(ϕ(t)) has an extreme value at b.
Hence

0 = h′(b) = ∇f(ϕ(b)) ·Dϕ(b) = ∇f(c) ·Dϕ(b). (3.5.4)

Since (3.5.4) holds for any curve in S through c and Dϕ(b) is tangent to the given curve
at c, it follows that ∇f(c) is orthogonal to the tangent hyperplane to S at c. But S is a
level set of g, so we know from our work in Section 3.3 that the vector ∇g(c), provided
it is nonzero, is a normal vector for the tangent hyperplane to S at c. Hence ∇f(c) and
∇g(c) must be parallel. That is, there must exist a scalar λ such that

∇f(c) = λ∇g(c). (3.5.5)

The idea now is that in looking for extreme values, we need only consider points c for
which both g(c) = 0 and ∇f(c) = λ∇g(c) for some scalar λ. The scalar λ is known as a
Lagrange multiplier, and this method for finding extreme values subject to a constraining
equation is known as the method of Lagrange multipliers.

Example Suppose that the temperature at a point (x, y, z) on the unit sphere S =
S2((0, 0, 0), 1) is given by

T (x, y, z) = 30 + 5(x+ z).

To find the extreme values of T , we first define

g(x, y, z) = x2 + y2 + z2 − 1,

thus making S the level surface of g specified by g(x, y, z) = 0. Now

∇f(x, y, z) = (5, 0, 5)

and
∇g(x, y, z) = (2x, 2y, 2z).

The candidates for the locations of extreme values will be solutions of the equations

∇f(x, y, z) = λ∇g(x, y, z),
g(x, y, z) = 0,
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that is,
(5, 0, 5) = λ(2x, 2y, 2z),

x2 + y2 + z2 − 1 = 0.

Hence we need to solve the following system of four equation in four unknowns:

5 = 2λx,
0 = 2λy,
5 = 2λz,

x2 + y2 + z2 = 1.

Now 5 = 2λx implies that λ 6= 0, and so 0 = 2λy implies that y = 0. Moreover, 5 = 2λx
and 5 = 2λz imply that 2λx = 2λz, from which it follows, since λ 6= 0, that x = z.
Substituting these results into the final equation, we have

1 = x2 + y2 + z2 = x2 + 0 + x2 = 2x2.

Thus x = − 1√
2

or x = 1√
2
, and we have two solutions for our equations,(

− 1√
2
, 0,− 1√

2

)
and (

1√
2
, 0,

1√
2

)
At this point, since T is continuous and S is closed and bounded, we need only evaluate
T at these points and compare their values. Now

T

(
− 1√

2
, 0,− 1√

2

)
= 30− 5

√
2 = 22.93

and

T

(
1√
2
, 0,

1√
2

)
= 30 + 5

√
2 = 37.07,

where the final values have been rounded to two decimal places, so the maximum tem-
perature on the sphere is 37.07 at

(
1√
2
, 0, 1√

2

)
and the minimum temperature is 22.93 at(

− 1√
2
, 0,− 1√

2

)
.

Example Suppose the farmer in our earlier example is faced with the opposite problem:
Given 300 square meters of material, what are the dimensions of the rectangular bin,
without a top, that holds the largest volume? If we again let x and y be the dimensions
of the base of the bin and z be its height, then we want to maximize

V = xyz
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on the region where x > 0, y > 0, and z > 0, subject to the constraint that

xy + 2xz + 2yz = 300.

If we let
g(x, y, z) = xy + 2xz + 2yz − 300,

then our problem is to maximize V subject to the constraint g(x, y, z) = 0. Now

∇V = (yz, xz, xy)

and
∇g(x, y, z) = (y + 2z, x+ 2z, 2x+ 2y),

so the system of equations
∇V = λ∇g(x, y, z),
g(x, y, z) = 0,

becomes the system

yz = λ(y + 2z), (3.5.6)
xz = λ(x+ 2z), (3.5.7)
xy = λ(2x+ 2y), (3.5.8)

xy+2xz + 2yz = 300. (3.5.9)

Equations (3.5.6) and (3.5.7) imply that

λ =
yx

y + 2z

and
λ =

xz

x+ 2z,
so

yz

y + 2z
=

xz

x+ 2z
,

that is,
y

y + 2z
=

x

x+ 2z
.

Hence
xy + 2yz = xy + 2xz.

Thus 2yz = 2xz, so x = y. Substituting this result into (3.5.8) gives us x2 = 4λx, from
which it follows that x = 4λ. Substituting into (3.5.7), we have

4λz = λ(4λ+ 2z) = 4λ2 + 2λz.
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Hence 2λz = 4λ2, so z = 2λ. Putting x = 4λ, y = 4λ, and z = 2λ into (3.5.9) yields the
equation

16λ2 + 16λ2 + 16λ2 = 300.

Thus 48λ2 = 300, so

λ = ±
√

300
48

= ±
√

25
4

= ±5
2
.

Now x, y, and z are all positive, so we must have λ = 5
2 , giving us x = 10, y = 10, and

z = 5. To show that we have the location of the maximum value of V , let

S = {(x, y, z) : g(x, y, z) = 0, x > 0, y > 0, z > 0}

and let D be that part of S for which 1 ≤ x ≤ 150, 1 ≤ y ≤ 150, and 1 ≤ z ≤ 150. Note
that if (x, y, z) lies on S, then

300 = xy + 2xz + 2yz

and so xy ≤ 300, xz ≤ 150, and yz ≤ 150. Moreover,

z =
300− xy
2x+ 2y

.

Now if either x ≥ 150 or y ≥ 150, then

z ≤ 300
300
≤ 1,

so
V = xyz ≤ (300)(1) = 300.

If x ≤ 1,
V = xyz ≤ (1)(150) = 150

and, similarly, if y ≤ 1,
V = yxz ≤ (1)(150) = 150.

Thus if (x, y, z) is either on the boundary of D or outside of D, then V ≤ 300. Since

V
∣∣
(x,y,z)=(10,10,5)

= 500,

it follows that the global maximum of V on S must occur inside D. In fact, this maximum
value must be 500 cubic meters, occurring when x = 10 meters, y = 10 meters, and z = 5
meters.

Problems

1. Find the maximum and minimum values of f(x, y) = xy on the set D = {(x, y) :
x2 + y2 ≤ 1}.
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2. Find the maximum and minimum values of f(x, y) = 8 − x2 − y2 on the set D =
{(x, y) : x2 + 9y2 ≤ 9}.

3. Find the maximum and minimum values of f(x, y) = x2 + 3xy + y2 on the set D =
{(x, y) : x2 + y2 ≤ 4}.

4. Find all local extreme values of f(x, y) = xe−(x2+y2).

5. Find all local extreme values of g(x, y) = x2e−(x2+y2).

6. Find all local extreme values of g(x, y) =
1

1 + x2 + y2
.

7. Find all local extreme values of f(x, y) = 4xy − 2x2 − y4.

8. Find all local extreme values of h(x, y) = 2x4 + y4 − x2 − 2y2.

9. Find all local extreme values of f(x, y, z) = x2 + y2 + z2.

10. Find all local extreme values of g(x, y, z) = x2 + y2 − z2.

11. A farmer wishes to build a rectangular bin, with a top, to hold a volume of 1000 cubic
meters. Find the dimensions of the bin that will minimize the amount of material
needed in its construction.

12. A farmer wishes to build a rectangular bin, with a top, using 600 square meters of
material. Find the dimensions of the bin that will maximize the volume.

13. Find the extreme values of f(x, y, z) = x+y+ z on the sphere with equation x2 +y2 +
z2 = 1.

14. Find the minimum distance in R2 from the origin to the line with equation 3x+2y = 4.

15. Find the minimum distance in R3 from the origin to the plane with equation 2x+4y+
z = 6.

16. Find the minimum distance in R2 from the origin to the curve with equation xy = 1.

17. The ellipsoid with equation x2 + 2y2 + z2 = 4 is heated so that its temperature at
(x, y, z) is given by T (x, y, z) = 70 + 10(x− z). Find the hottest and coldest points on
the ellipsoid.

18. Suppose an airline requires that the sum of the length, width, and height of carry-on
luggage cannot exceed 45 inches (assuming the luggage is in the shape of a rectangular
box). Find the dimensions of a piece of carry-on luggage that has the maximum
volume.

19. Let f(x, y) = (y − 4x2)(y − x2).
(a) Verify that (0, 0) is a critical point of f .
(b) Show that Hf(0, 0) is nondefinite.
(c) Show that along any line through the origin, f has a local minimum at (0, 0).
(d) Find a curve through the origin such that, along the curve, f has a local maximum

at (0, 0). Note that this shows that (0, 0) is a saddle point.
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20. Let f(x, y) = (x − y)2. Find all critical points of f and categorize them according
as they are either saddle points or the location of local extreme values. Is the second
derivative test useful in this case?

21. Let g(x, y) = sin(x2 + y2). Find all critical points of g. Which critical points are the
location of local maximums? Local minimums? Are there any saddle points?

22. What does a plot of the gradient vectors look like around a saddle point of a function
f : R2 → R? You might look at some examples, like f(x, y) = x2 − y2, f(x, y) = xy,
or even f(x, y) = xye−(x2+y2).

23. Given n points (x1, y1), (x2, y2), . . . , (xn, yn) in R2, the line with equation y = mx+ b
which minimizes

L(m, b) =
n∑
i=1

(y1 − (mxi + b))2

is called the least squares line.

(a) Give a geometric interpretation for L(m, b).

(b) Show that the parameters of the least squares line are

m =

n

n∑
i=1

xiyi −

(
n∑
i=1

xi

)(
n∑
i=1

yi

)

n

n∑
i=1

x2
i −

(
n∑
i=1

xi

)2

and
b = ȳ −mx̄,

where

ȳ =
1
n

n∑
i=1

yi

and

x̄ =
1
n

n∑
i=1

xi.

24. The following table is taken from a report prepared in the 1960’s to study the effect
of leaks of radioactive waste from storage bins at the nuclear facilities at Hanford,
Washington, on the cancer rates in nine Oregon counties which border the Columbia
River. The table gives an index of exposure, which takes into account such things as
distance from the Hanford facilities and the distance of the population from the river,
along with the cancer mortality rate per 100,000 people.
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County Index of Exposure Cancer Mortality Rate

Umatilla 2.49 147.1
Morrow 2.57 130.1
Gilliam 3.41 129.9
Sherman 1.25 113.5
Wasco 1.62 137.5
Hood River 3.83 162.3
Portland 11.64 207.5
Columbia 6.41 177.9
Clatsop 8.34 210.3

Using Problem 22, find the least squares line for this data (let the index of exposure be
the x data). Plot the points along with the line.


