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In this chapter we will study functions f : Rn → R, functions which take vectors for inputs
and give scalars for outputs. For example, the function that takes a point in space for
input and gives back the temperature at that point is such a function; the function that
reports the gross national product of a country is another such function. Note that the
domain space of the first example is three-dimensional, while the domain of the latter has,
for most countries, thousands of dimensions. As usual, whenever possible we will state our
results for an arbitrary n-dimensional space, although most of our examples will deal with
only two or three dimensions.

Level sets and graphs

We begin by considering some geometrical methods for picturing functions of the form
f : Rn → R.

Definition Given a function f : Rn → R and a real number c, we call the set

L = {(x1, x2, . . . , xn) : f(x1, x2, . . . , xn) = c} (3.1.1)

a level set of f at level c. We also call L a contour of f . When n = 2, we call L a level
curve of f and when n = 3 we call L a level surface of f . A plot displaying level sets for
several different levels is called a contour plot.

Example Suppose f : R2 → R is defined by

f(x, y) = 2x2 + y2.

Given a real number c, the set of all points satisfying

2x2 + y2 = c

is a level set of f . For c < 0, this set is empty; for c = 0, it consists of only the point (0, 0);
for any c > 0, the level set is an ellipse with center at (0, 0). Hence a contour plot of f , as
shown in Figure 3.1.1, consists of concentric ellipses.

Example Suppose f : R2 → R is defined by

f(x, y) =
sin(

√
x2 + y2)√
x2 + y2

.

1 Copyright c© by Dan Sloughter 2001
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Figure 3.1.1 Level curves 2x2 + y2 = c

For any point (x, y) on the circle of radius r > 0 centered at the origin, f(x, y) has the
constant value

sin(r)
r

.

Hence a contour plot of f , like that shown in Figure 3.1.2, consists of concentric circles
centered at the origin.

Example Suppose f : R3 → R is defined by

f(x, y, z) = x2 + 2y2 + 3z2.

The level surface of f with equation

x2 + 2y2 + 3z2 = 1

is shown in Figure 3.1.3. Note that, for example, fixing a value z0 of z yields the equation

x2 + y2 = 1− 3z2
0 ,
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Figure 3.1.2 Level curves
sin(

√
x2 + y2)√
x2 + y2

= c

the equation of an ellipse. This explains why a slice of the level surface shown in Figure
3.1.3 parallel to the xy-plane is an ellipse. Similarly, slices parallel to the xz-plane and the
yz-plane are ellipses, which is why this surface is an example of an ellipsoid.
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Figure 3.1.3 The level surface x2 + 2y2 + 3z2 = 1
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Figure 3.1.4 The paraboloid z = 2x2 + y2

Definition Given a function f : Rn → R, we call the set

G = {(x1, x2, . . . , xn, xn+1) : xn+1 = f(x1, x2, . . . , xn)} (3.1.2)

the graph of f .

Note that the graph G of a function f : Rn → R is in Rn+1. As a consequence, we can
picture G only if n = 1, in which case G is a curve as studied in single-variable calculus,
or n = 2, in which case G is a surface in R3.
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Example Consider the function f : R2 → R defined by

f(x, y) = 2x2 + y2.

The graph of f is then the set of all points (x, y, z) in R3 which satisfy the equation
z = 2x2 + y2. One way to picture the graph of f is to imagine raising the level curves
in Figure 3.1.1 to their respective heights above the xy-plane, creating the surface in R3

shown in Figure 3.1.4. Another way to picture the graph is to consider slices of the graph
lying above a grid of lines parallel to the axes in the xy-plane. For example, for a fixed
value of x, say x0, the set of points satisfying the equation z = 2x2

0 +y2 is a parabola lying
above the line x = x0. Similarly, fixing a value y0 of y yields the parabola z = 2x2 + y0

lying above the line y = y0. If we draw these parabolas for numerous lines of the form
x = x0 and y = y0, we obtain a wire-frame of the graph. The graph shown in Figure 3.1.4
was obtained by filling in the surface patches of a wire-frame mesh, the outline of which is
visible on the surface. This surface is an example of a paraboloid.
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Figure 3.1.5 Graph of f(x, y) =
sin(

√
x2 + y2)√
x2 + y2

Example Although the graphs of many functions may be sketched reasonably well by
hand using the ideas of the previous example, for most functions a good picture of its graph
requires either computer graphics or considerable artistic skill. For example, consider the
graph of

f(x, y) =
sin(

√
x2 + y2)√
x2 + y2

.

Using the contour plot, we can imagine how the graph of f oscillates as we move away
from the origin, the level circles of the contour plot rising and falling with the oscillations
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of
sin(r)
r

,

where r =
√
x2 + y2. Equivalently, the slice of the graph above any line through the origin

will be the graph of

z =
sin(r)
r

.

This should give you a good idea what the graph of f looks like, but, nevertheless, most of
us could not produce the picture of Figure 3.1.5 without the aid of a computer. Notice that
although f is not defined at (0, 0), it appears that f(x, y) approaches 1 as (x, y) approaches
0. This is in fact true, a consequence of the fact that

lim
r→0

sin(r)
r

= 1.

We will return to this example after we have introduced limits and continuity.

Limits and continuity
By now the following two definitions should look familiar.

Definition Let a be a point in Rn and let O be the set of all points in the open ball of
radius r > 0 centered at c except c itself. That is,

O = {x : x is in Bn(c, r),x 6= c}. (3.1.3)

Suppose f : Rn → R is defined for all x in O. We say the limit of f(x) as x approaches c
is L, written lim

x→c
f(x) = L, if for every sequence of points {xm} in O,

lim
m→∞

f(xm) = L (3.1.4)

whenever lim
m→∞

xm = c.

Definition Suppose f : Rn → R is defined for all x in some open ball Bn(c, r), r > 0 .
We say f is continuous at c if

lim
x→c

f(x) = f(c). (3.1.5)

The following basic properties of limits follow immediately from the analogous prop-
erties for limits of sequences.

Proposition Suppose f : Rn → R and g : Rn → R with

lim
x→c

f(x) = L

and
lim
x→c

g(x) = M.
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Then
lim
x→c

(f(x) + g(x)) = L+M, (3.1.6)

lim
x→c

(f(x)− g(x)) = L−M, (3.1.7)

lim
x→c

f(x)g(x) = LM, (3.1.8)

lim
x→c

f(x)
g(x)

=
L

M
, (3.1.9)

and
lim
x→c

kf(x) = kL (3.1.10)

for any scalar k.

Now suppose f : Rn → R, h : R→ R,

lim
x→c

f(x) = L, (3.1.11)

and h is continuous at L. Then for any sequence {xm} in Rn with

lim
m→∞

xm = c, (3.1.12)

we have
lim
m→∞

f(xm) = L, (3.1.13)

and so
lim
m→∞

h(f(xm)) = h(L) (3.1.14)

by the continuity of h at L. Thus we have the following result about compositions of
functions.

Proposition If f : Rn → R, h : R→ R,

lim
x→c

f(x) = L,

and h is continuous at L, then

lim
x→c

h ◦ f(x) = lim
x→c

h(f(x)) = h(L). (3.1.15)

Example Suppose we define f : Rn → R by

f(x1, x2, . . . , xn) = xk,

where k is a fixed integer between 1 and n. If a = (a1, a2, . . . , an) is a point in Rn and
lim
m→∞

xm = a, then

lim
m→∞

f(xm) = lim
m→∞

xmk = ak,
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where xmk is the kth coordinate of xm. Thus

lim
x→a

f(x) = ak.

This result is a basic building block for the examples that follow. For a particular example,
if f(x, y) = x, then

lim
(x,y)→(2,3)

f(x, y) = lim
(x,y)→(2,3)

x = 2.

Example If we define f : R3 → R by

f(x, y, z) = xyz,

then, using (3.1.8) in combination with the previous example,

lim
(x,y,z)→(a,b,c)

f(x, y, z) = lim
(x,y,z)→(a,b,c)

xyz

= ( lim
(x,y,z)→(a,b,c)

x)( lim
(x,y,z)→(a,b,c)

y)( lim
(x,y,z)→(a,b,c)

z)

= abc.

for any point (a, b, c) in R3. For example,

lim
(x,y,z)→(3,2,1)

f(x, y, z) = lim
(x,y,z)→(3,2,1)

xyz = (3)(2)(1) = 6.

Example Combining the previous examples with (3.1.6), (3.1.7), (3.1.8), and (3.1.10),
we have

lim
(x,y,z)→(2,1,3)

(xy2 + 3xyz − 6xz) = ( lim
(x,y,z)→(2,1,3)

x)( lim
(x,y,z)→(2,1,3)

y)( lim
(x,y,z)→(2,1,3)

y)

+ 3( lim
(x,y,z)→(2,1,3)

x)( lim
(x,y,z)→(2,1,3)

y)( lim
(x,y,z)→(2,1,3)

z)

− 6( lim
(x,y,z)→(2,1,3)

x)( lim
(x,y,z)→(2,1,3)

z)

= (2)(1)(1) + (3)(2)(1)(3)− (6)(2)(3)
= −16.

The last three examples are all examples of polynomials in several variables. In general,
a function f : Rn → R of the form

f(x1, x2, . . . , xn) = axi11 x
i2
2 · · ·xinn ,

where a is a scalar and i1, i2, . . . , in are nonnegative integers, is called a monomial. A
function which is a sum of monomials is called a polynomial. The following proposition is
a consequence of the previous examples and (3.1.6), (3.1.7), (3.1.8), and (3.1.10).
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Proposition If f : Rn → R is a polynomial, then for any point c in Rn,

lim
x→c

f(x) = f(c). (3.1.16)

In other words, f is continuous at every point c in Rn.

If g and h are both polynomials, then we call the function

f(x) =
g(x)
h(x)

(3.1.17)

a rational function. The next proposition is a consequence of the previous theorem and
(3.1.9).

Proposition If is a rational function defined at c, then

lim
x→c

f(x) = f(c). (3.1.18)

In other words, f is continuous at every point c in its domain.

Example Since

f(x, y, z) =
x2y + 3xyz2

4x2 + 3z2

is a rational function, we have, for example,

lim
(x,y,z)→(2,1,3)

f(x, y, z) = lim
(x,y,z)→(2,1,3)

x2y + 3xyz2

4x2 + 3z2
=

4 + 54
16 + 27

=
58
43
.

Example Combining (3.1.18) with (3.1.15), we have

lim
(x,y,z)→(1,2,1)

log
(

1
x2 + y2 + z2

)
= log

(
lim

(x,y,z)→(1,2,1)

1
x2 + y2 + z2

)
= log

(
1
6

)
= − log(6).

From the continuity of the square root function and our result above about the conti-
nuity of polynomials, we may conclude that the function f : Rn → R defined by

f(x1, x2, . . . , xn) = ‖(x1, x2, . . . , xn)‖ =
√
x2

1 + x2
2 + · · ·+ x2

n

is a continuous function. This fact is useful in computing some limits, particularly in
combination with the fact that for any point x = (x1, x2, . . . , xn) in Rn,

‖x‖ =
√
x2

1 + x2
2 + · · ·+ x2

n ≥
√
x2
k = |xk| (3.1.19)

for any k = 1, 2, . . . , n.
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Figure 3.1.6 Graph of f(x, y) =
x2y

x2 + y2

Example Suppose f : R2 → R is defined by

f(x, y) =
x2y

x2 + y2
.

Although f is a rational function, we cannot use (3.1.18) to compute

lim
(x,y)→(0,0)

f(x, y)

since f is not defined at (0, 0). However, if we let x = (x, y), then, using (3.1.19),

|f(x, y)| =
∣∣∣∣ x2y

x2 + y2

∣∣∣∣ =
|x|2|y|
|x2 + y2|

=
|x|2|y|
‖x‖2

≤ ‖x‖
2‖x‖
‖x‖2

= ‖x‖.

Now
lim

(x,y)→(0,0)
‖x‖ = 0,

so
lim

(x,y)→(0,0)
|f(x, y)| = 0.

Hence

lim
(x,y)→(0,0)

f(x, y) = lim
(x,y)→(0,0)

x2y

x2 + y2
= 0.

See Figure 3.1.6.



Section 3.1 Geometry, Limits, and Continuity 11

Recall that for a function ϕ : R→ R,

lim
t→c

ϕ(t) = L

if and only if both
lim
t→c−

ϕ(t) = L

and
lim
t→c+

ϕ(t) = L.

In particular, if the one-sided limits do not agree, we may conclude that the limit does
not exist. Similar reasoning may be applied to a function f : Rn → R, the difference
being that there are infinitely many different curves along which the variable x might
approach a given point c in Rn, as opposed to only the two directions of approach in R.
As a consequence, it is not possible to establish the existence of a limit with this type
of argument. Nevertheless, finding two ways to approach c which yield different limiting
values is sufficient to show that the limit does not exist.

Example Suppose g : R2 → R is defined by

g(x, y) =
xy

x2 + y2
.

If we define α : R2 → R by α(t) = (t, 0), then

lim
t→0

α(t) = lim
t→0

(t, 0) = (0, 0)

and
lim
t→0

g(α(t)) = lim
t→0

f(t, 0) = lim
t→0

0
t2

= 0.

Now α is a parametrization of the x-axis, so the previous limit computation says that
g(x, y) approaches 0 as (x, y) approaches (0, 0) along the x-axis. However, if we define
β : R→ R

2 by β(t) = (t, t), then β parametrizes the line x = y,

lim
t→0

β(t) = lim
t→0

(t, t) = (0, 0),

and

lim
t→0

g(β(t)) = lim
t→0

f(t, t) = lim
t→0

t2

2t2
=

1
2
.

Hence g(x, y) approaches 1
2 as (x, y) approaches (0, 0) along the line x = y. Since these two

limits are different, we may conclude that g(x, y) does not have a limit as (x, y) approaches
(0, 0). Note that g in this example and f in the previous example are very similar functions,
although our limit calculations show that their behavior around (0, 0) differs significantly.
In particular, f has a limit as (x, y) approaches (0, 0), whereas g does not. This may be
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Figure 3.1.7 Graph of g(x, y) =
xy

x2 + y2

seen by comparing the graph of g in Figure 3.1.7, which has a tear at the origin, with that
of f in Figure 3.1.6.

The next proposition lists some basic properties of continuous functions, all of which
follow immediately from the similar list of properties of limits.

Proposition Suppose f : Rn → R and g : Rn → R are both continuous at c. Then the
functions with values at x given by

f(x) + g(x), (3.1.20)

f(x)− g(x), (3.1.21)

f(x)g(x), (3.1.22)

f(x)
g(x)

(3.1.23)

(provided g(c) 6= 0), and
kf(x), (3.1.24)

where k is any scalar, are all continuous at c.

From the result above about the limit of a composition of two functions, we have the
following proposition.

Proposition If f : Rn → R is continuous at c and ϕ : R → R is continuous at f(c),
then ϕ ◦ f is continuous at c.
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Example Since the function ϕ(t) = sin(t) is continuous for all t and the function

f(x, y, z) =
√
x2 + y2 + z2

is continuous at all points (x, y, z) in R3, the function

g(x, y, z) = sin(
√
x2 + y2 + z2)

is continuous at all points (x, y, z) in R3.

Example Since the function

h(x, y) = sin(
√
x2 + y2)

is continuous for all (x, y) in R2 (same argument as in the previous example) and the
function

g(x, y) =
√
x2 + y2

is continuous for all (x, y) in R2, the function

f(x, y) =
sin(

√
x2 + y2)√
x2 + y2

is, using (3.1.23), continuous at every point (x, y) 6= (0, 0) in R2. Moreover, if we let
x = (x, y), then

lim
(x,y)→(0,0)

f(x, y) = lim
(x,y)→(0,0)

sin(
√
x2 + y2)√
x2 + y2

= lim
(x,y)→(0,0)

sin(‖x‖)
‖x‖

= lim
r→0

sin(r)
r

= 1.

Hence the discontinuity at (0, 0) is removable. That is, if we define

g(x, y) =


sin(

√
x2 + y2)√
x2 + y2

, if (x, y) 6= (0, 0),

1, if (x, y) = (0, 0),

then g is continuous for all (x, y) in R2.

Open and closed sets
In single-variable calculus we talk about a function being continuous not just at a point,
but on an open interval, meaning that the function is continuous at every point in the
open interval. Similarly, we need to generalize the definition of continuity of a function
f : Rn → R from that of continuity at a point in Rn to the idea of a function being
continuous on a set in Rn. Now the condition for a function f to be continuous at a point
c requires that f be defined on some open ball containing c. Hence, in order to say that f
is continuous at every point in some set U , it is necessary that, given any point u in U , f
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be defined on some open ball containing u. This provides the motivation for the following
definition.

Definition We say a set of points U in Rn is open if whenever u is a point in U , there
exists a real number r > 0 such that the open ball Bn(u, r) lies entirely within U . We say
a set of points C in Rn is closed if the set of all points in Rn which do not lie in C form
an open set.

Example R
n is itself an open set.

Example Any open ball in Rn is an open set. In particular, any open interval in R is an
open set. To see why, consider an open ball Bn(a, r) in Rn. Given a point y in Bn(a, r),
let s be the smaller of ‖y−a‖ (the distance from y to the center of the ball) and r−‖y−a‖
(the distance from y to the edge of the ball). Then Bn(y, s) is an open ball which lies
entirely within Bn(a, r). Hence Bn(a, r) is an open set.

Example Any closed ball in Rn is a closed set. In particular, any closed interval in R is
a closed set. To see why, consider a closed ball B̄n(a, r). Given a point y not in B̄n(a, r),
let s = ‖y− a‖− r, the distance from y to the edge of B̄n(a, r). Then Bn(y, s) is an open
ball which lies entirely outside of B̄n(x, r). Hence B̄n(x, r) is a closed set.

Example Given real numbers a1 < b1, a2 < b2, . . . , an < bn, we call the set

U = {(x1, x2, . . . , xn) : ai < xi < bi, i = 1, 2, . . . , n}

an open rectangle in Rn and the set

C = {(x1, x2, . . . , xn) : ai ≤ xi ≤ bi, i = 1, 2, . . . , n}

a closed rectangle in Rn. An argument similar to that in the previous example shows that
U is an open set and C is a closed set.

Definition We say a function f : Rn → R is continuous on an open set U if f is
continuous at every point u in U .

Example The function

f(x, y, z) =
3xyz − 6x

x2 + y2 + z2 + 1

is continuous on R3.

Example The functions

f(x, y) =


x2y

x2 + y2
, if (x, y) 6= (0, 0),

0, if (x, y) = (0, 0),

and

g(x, y) =


sin(

√
x2 + y2)√
x2 + y2

, if (x, y) 6= (0, 0),

1, if (x, y) = (0, 0),

are, from our work in previous examples, continuous on R2.
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Example The function

g(x, y) =
xy

x2 + y2

is continuous on the open set

U = {(x, y) : (x, y) 6= (0, 0)}.

Note that in this case it is not possible to define g at (0, 0) in such a way that the resulting
function is continuous at (0, 0), a consequence of our work above showing that g does not
have a limit as (x, y) approaches (0, 0).

Example The function
f(x, y) = log(xy)

is continuous on the open set

U = {(x, y) : x > 0 and y > 0}.

Problems

1. Plot the graph and a contour plot for each of the following functions. Do your plots
over regions large enough to illustrate the behavior of the function.

(a) f(x, y) = x2 + 4y2 (b) f(x, y) = x2 − y2

(c) f(x, y) = 4y2 − 2x2 (d) h(x, y) = sin(x) cos(y)

(e) f(x, y) = sin(x+ y) (f) g(x, y) = sin(x2 + y2)

(g) g(x, y) = sin(x2 − y2) (h) h(x, y) = xe−
√
x2+y2

(i) f(x, y) =
1

2π
e−

1
2π (x2+y2) (j) f(x, y) = sin(π sin(x) + y)

(k) h(x, y) =
sin(x2 + y2)
x2 + y2

(l) g(x, y) = log(
√
x2 + y2)

2. For each of the following, plot the contour surface f(x, y, z) = c for the specified value
of c.

(a) f(x, y, z) = x2 + y2 + z2, c = 4 (b) f(x, y, z) = x2 + 4y2 + 2z2, c = 7

(c) f(x, y, z) = x2 + y2 − z2, c = 1 (d) f(x, y, z) = x2 − y2 + z2, c = 1

3. Evaluate the following limits.

(a) lim
(x,y)→(2,1)

(3xy + x2y + 4y) (b) lim
(x,y,z)→(1,2,1)

3xyz
2xy2 + 4z

(c) lim
(x,y)→(2,0)

cos(3xy)√
x2 + 1

(d) lim
(x,y,z)→(2,1,3)

ye2x−3y+z
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4. For each of the following, either find the specified limit or explain why the limit does
not exist.

(a) lim
(x,y)→(0,0)

xy2

x2 + y2
(b) lim

(x,y)→(0,0)

x

x+ y

(c) lim
(x,y)→(0,0)

x

x+ y2
(d) lim

(x,y)→(0,0)

xy√
x2 + y2

(e) lim
(x,y)→(0,0)

1− e−(x2+y2)

x2 + y2
(f) lim

(x,y)→(0,0)

x4 − y4

x2 + y2

5. Let f(x, y) =
x2y

x4 + 4y2
.

(a) Define α : R→ R
2 by α(t) = (t, 0). Show that lim

t→0
f(α(t)) = 0.

(b) Define β : R→ R
2 by β(t) = (0, t). Show that lim

t→0
f(β(t)) = 0.

(c) Show that for any real number m, if we define γ : R→ R
2 by γ(t) = (t,mt), then

lim
t→0

f(γ(t)) = 0.

(d) Define δ : R→ R
2 by δ(t) = (t, t2). Show that lim

t→0
f(δ(t)) =

1
5

.

(e) What can you conclude about lim
(x,y)→(0,0)

x2y

x4 + 4y2
?

(f) Plot the graph of f and explain your results in terms of the graph.

6. Discuss the continuity of the function

f(x, y) =


1− e−

√
x2+y2√

x2 + y2
, if (x, y) 6= (0, 0),

1, if (x, y) = (0, 0).

7. Discuss the continuity of the function

g(x, y) =


x2y2

x4 + y4
, if (x, y) 6= (0, 0),

1, if (x, y) = (0, 0).

8. For each of the following, decide whether the given set is open, closed, neither open
nor closed, or both open and closed.
(a) (3, 10) in R
(b) [−2, 5] in R
(c) {(x, y) : x2 + y2 < 4} in R2

(d) {(x, y) : x2 + y2 > 4} in R2
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(e) {(x, y) : x2 + y2 ≤ 4} in R2

(f) {(x, y) : x2 + y2 = 4} in R2

(g) {(x, y, z) : −1 < x < 1,−2 < y < 3, 2 < z < 5} in R3

(h) {(x, y) : −3 < x ≤ 4,−2 ≤ y < 1} in R2

9. Give an example of a subset of R which is neither open nor closed.

10. Is it possible for a subset of R2 to be both open and closed? Explain.


