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Motion Along a Curve

Velocity and acceleration
Consider a particle moving in space so that its position at time t is given by x(t). We
think of x(t) as moving along a curve C parametrized by a function f , where f : R→ Rn.
Hence we have x(t) = f(t), or, more simply, x = f(t). For us, n will always be 2 or 3, but
there are physical situations in which it is reasonable to have larger values of n, and most
of what we do in this section will apply to those cases equally well. This is also a good
time to introduce the Leibniz notation for a derivative, thus writing

dx
dt

= Df(t). (2.3.1)

At a given time t0, the vector x(t0 +h)−x(t0) represents the magnitude and direction
of the change of position of the particle along C from time t0 to time t0 + h, as shown in
Figure 2.3.1. Dividing by h, we obtain a vector,

x(t0 + h)− x(t0)
h

, (2.3.2)

with the same direction, but with length approximating the average speed of the particle
over the time interval from t0 to t0 + h. Assuming differentiability and taking the limit as
h approaches 0, we have the following definition.

x(   )

x (    +   )t h
x(    +   )t0 - x(   )t0

t0

0

h

Figure 2.3.1 Motion along a curve C
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2 Motion Along a Curve Section 2.3

Definition Suppose x(t) is the position of a particle at time t moving along a curve C
in Rn. We call

v(t) =
d

dt
x(t) (2.3.3)

the velocity of the particle at time t and we call

s(t) = ‖v(t)‖ (2.3.4)

the speed of the particle at time t. Moreover, we call

a(t) =
d

dt
v(t) (2.3.5)

the acceleration of the particle at time t.

Example Consider a particle moving along an ellipse so that its position at any time t
is

x = (2 cos(t), sin(t)).

Then its velocity is
v = (−2 sin(t), cos(t)),

its speed is

s =
√

4 sin2(t) + cos2(t) =
√

3 sin2(t) + 1,

and its acceleration is
a = (−2 cos(t),− sin(t)).

For example, at t = π
4 we have

x
∣∣
t= π

4
=
(√

2,
1√
2

)
,

v
∣∣
t= π

4
=
(
−
√

2,
1√
2

)
,

s
∣∣
t= π

4
=

√
5
2
,

and

a
∣∣
t= π

4
=
(
−
√

2,− 1√
2

)
.

See Figure 2.3.2. Notice that, in this examples, a = −x for all values of t.
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Figure 2.3.2 Position, velocity, and acceleration vectors for motion on an ellipse

Curvature

Suppose x is the position, v is the velocity, s is the speed, and a is the acceleration, at
time t, of a particle moving along a curve C. Let T (t) be the unit tangent vector and N(t)
be the principal unit normal vector at x. Now

T (t) =

dx
dt∥∥∥∥dxdt
∥∥∥∥ =

v
‖v‖

=
v
s
, (2.3.6)

so
v = s‖T (t)‖. (2.3.7)

Thus
a =

dv
dt

=
d

dt
sT (t) =

ds

dt
T (t) + sDT (t) (2.3.8)

Since

N(t) =
DT (t)
‖DT (t)‖

, (2.3.9)

we have
a =

ds

dt
T (t) + s‖DT (t)‖N(t). (2.3.10)

Note that (2.3.10) expresses the acceleration of a particle as the sum of scalar multiples
of the unit tangent vector and the principal unit normal vector. That is,

a = aTT (t) + aNN(t), (2.3.11)

where
aT =

ds

dt
(2.3.12)

and
aN = s‖DT (t)‖. (2.3.13)
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However, since T (t) and N(t) are orthogonal unit vectors, we also have

a · T (t) = (aTT (t) + aNN(t)) · T (t)
= aT (T (t) · T (t)) + aN (T (t) ·N(t))
= aT

(2.3.14)

and
a ·N(t) = (aTT (t) + aNN(t)) ·N(t)

= aT (T (t) ·N(t)) + aN (N(t) ·N(t))
= aN .

(2.3.15)

Hence aT is the coordinate of a in the direction of T (t) and aN is the coordinate of a in the
direction of N(t). Thus (2.3.10) writes the acceleration as a sum of its component in the
direction of the unit tangent vector and its component in the direction of the principal unit
normal vector. In particular, this shows that the acceleration lies in the plane determined
by T (t) and N(t). Moreover, aT is the rate of change of speed, while aN is the product of
the speed s and ‖DT (t)‖, the magnitude of the rate of change of the unit tangent vector.
Since ‖T (t)‖ = 1 for all t, ‖DT (t)‖ reflects only the rate at which the direction of T (t)
is changing; in other words, ‖DT (t)‖ is a measurement of how fast the direction of the
particle moving along the curve C is changing at time t. If we divide this by the speed
of the particle, we obtain a standard measurement of the rate of change of direction of C
itself.

Definition Given a curve C with smooth parametrization x = f(t), we call

κ =
‖DT (t)‖
s(t)

(2.3.16)

the curvature of C at f(t).

Using (2.3.16), we can rewrite (2.3.10) as

a =
ds

dt
T (t) + s2κN(t). (2.3.17)

Hence the coordinate of acceleration in the direction of the tangent vector is the rate of
change of the speed and the coordinate of acceleration in the direction of the principal
normal vector is the square of the speed times the curvature. Thus the greater the speed
or the tighter the curve, the larger the size of the normal component of acceleration; the
greater the rate at which speed is increasing, the greater the tangential component of
acceleration. This is why drivers are advised to slow down while approaching a curve, and
then to accelerate while driving through the curve.

Example Suppose a particle moves along a line in Rn so that its position at any time t
is given by

x = tw + p,
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where w 6= 0 and p are vectors in Rn. Then the particle has velocity

v =
dx
dt

= w

and speed s = ‖w‖, so the unit tangent vector is

T (t) =
v
s

=
w
‖w‖

.

Hence T (t) is a constant vector, so DT (t) = 0 and

κ =
‖DT (t)‖

s
= 0

for all t. In other words, a line has zero curvature, as we should expect since the tangent
vector never changes direction.

Example Consider a particle moving along a circle C in R2 of radius r > 0 and center
(a, b), with its position at time given by

x = (r cos(t) + a, r sin(t) + b).

Then its velocity, speed, and acceleration are

v = (−r sin(t), r cos(t)),

s =
√
r2 sin( t) + r2 cos2(t) = r

and
a = (−r cos(t),−r sin(t)),

respectively. Hence the unit tangent vector is

T (t) =
v
s

= (− sin(t), cos(t)).

Thus
DT (t) = (− cos(t),− sin(t))

and
‖DT (t)‖ =

√
cos2(t) + sin2(t) = 1.

Hence the curvature of C is, for all t,

κ =
‖DT (t)‖

s
=

1
r
.
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Thus a circle has constant curvature, namely, the reciprocal of the radius of the circle. In
particular, the larger the radius of a circle, the smaller the curvature. Also, note that

ds

dt
=

d

dt
r = 0,

so, from (2.3.10), we have
a = rN(t),

which we can verify directly. That is, the acceleration has a normal component, but no
tangential component.

Example Now consider a particle moving along an ellipse E so that its position at any
time t is

x = (2 cos(t), sin(t)).

Then, as we saw above, the velocity and speed of the particle are

v = (−2 sin(t), cos(t))

and
s =

√
3 sin(2) + 1,

respectively. For purposes of differentiation, it will be helpful to rewrite s as

s =

√
3
2

(1− cos(2t)) + 1 =

√
5− 3 cos(2t)

2
.

Then the unit tangent vector is

T (t) =

√
2

5− 3 cos(2t)
(−2 sin(t), cos(t)).

Thus

DT (t) =

√
2

5− 3 cos(2t)
(−2 cos(t),− sin(t))− 3

√
2 sin(2t)

(5− 3 cos(2t))
3
2

(−2 sin(t), cos(t)).

So, for example, at t = π
4 , we have

x
∣∣
t= π

4
=
(√

2,
1√
2

)
,

v
∣∣
t= π

4
=
(
−
√

2,
1√
2

)
,

s
∣∣
t= π

4
=

√
5
2
,
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T
(π

4

)
=

1√
5

(−2, 1),

DT
(π

4

)
= − 1

5
√

5
(4, 8),

and ∥∥∥DT (π
4

)∥∥∥ =
1

5
√

5

√
16 + 64 =

4
5
.

Hence the curvature of E at
(√

2, 1√
2

)
is

κ
∣∣
t= π

4
=

4
5√
5
2

=
4
√

2
5
√

5
= 0.05060,

where the final numerical value has been rounded to four decimal places. Although the
general expression for κ is complicated, it is easily computed and plotted using a computer
algebra system, as shown in Figure 2.3.3. Comparing this with the plot of this ellipse in
Figure 2.3.2, we can see why the curvature is greatest around (2, 0) and (−2, 0), corre-
sponding to t = 0, t = π, and t = 2π, and smallest at (0, 1) and (0,−1), corresponding to
t = π

2 and t = 3π
2 . Finally, as we saw above, the acceleration of the particle is

a = (−2 cos(t),− sin(t)),

so

a
∣∣
t= π

4
=
(
−
√

2,− 1√
2

)
.

Now if we write
a
∣∣
t= π

4
= aTT (t) + aNN(t),

then we may either compute, using (2.3.17),

aT =
ds

dt

∣∣∣
t= π

4

=
1√
2

(5− 3 cos(2t))−
1
2 (3 sin(2t)

∣∣∣
t= π

4

=
3√
10

and

aN = s2
∣∣
t= π

4
k
∣∣
t= π

4
=

5
2

4
√

2
5
√

5
=

2
√

2√
5

=
4√
10
,

or, using (2.3.14) and (2.3.15),

aT = a
∣∣
t= π

4
· T
(π

4

)
=
(
−
√

2,− 1√
2

)
· 1√

5
(−2, 1) =

3√
10

and

aN = a
∣∣
t= π

4
·N
(π

4

)
=
(
−
√

2,− 1√
2

)
· 1

4
√

5
(−4,−8) =

4√
10
.
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Figure 2.3.3 Curvature of an ellipse

Hence, in either case,

a
∣∣
t= π

4
=

3√
10
T
(π

4

)
+

4√
10
N
(π

4

)
.

Arc length
Suppose a particle moves along a curve C in Rn so that its position at time t is given by
x = f(t) and let D be the distance traveled by the particle from time t = a to t = b. We
will suppose that s(t) = ‖v(t)‖ is continuous on [a, b]. To approximate D, we divide [a, b]
into n subintervals, each of length

∆t =
b− a
n

,

and label the endpoints of the subintervals a = t0, t1, . . . , tn = b. If ∆t is small, then the
distance the particle travels during the jth subinterval, j = 1, 2, . . . , n, should be, approx-
imately, s∆t, an approximation which improves as ∆t decreases. Hence, for sufficiently
small ∆t (equivalently, sufficiently large n),

n∑
j=1

s(tj−1)∆t (2.3.18)

will provide an approximation as close to D as desired. That is, we should define

D = lim
n→∞

n∑
j=1

s(tj−1)∆t. (2.3.19)

But (2.3.18) is a Riemann sum (in particular, a left-hand rule sum) which approximates
the definite integral ∫ b

a

s(t)dt. (2.3.20)
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Hence the limit in (2.3.19) is the value of the definite integral (2.3.20), and so we have the
following definition.

Definition Suppose a particle moves along a curve C in Rn so that its position at time
t is given by x = f(t). Suppose the velocity v(t) is continuous on the interval [a, b]. Then
we define the distance traveled by the particle from time t = a to time t = b to be∫ b

a

‖v(t)‖dt. (2.3.21)

Note that the distance traveled is the length of the curve C if the particle traverses C
exactly once. In that case, we call (2.3.21) the length of C. In general, for any t such that
the interval [a, t] is in the domain of f , we may calculate

σ(t) =
∫ t

a

‖v(u)‖du, (2.3.22)

which we call the arc length function for C.

Example Consider the helix H parametrized by

f(t) = (cos(t), sin(t), t).

If we let L denote the length of one complete loop of the helix, then a particle traveling
along H according to x = f(t) will traverse this distance as t goes from 0 to 2π. Since

v(t) = (− sin(t), cos(t), 1),

we have
‖v(t)‖ =

√
sin2(t) + cos2(t) + 1 =

√
2.

Hence

L =
∫ 2π

0

√
2dt = 2

√
2π.

Example Suppose a particle moves along a curve C so that its position at time t is given
by

x = ((1 + 2 cos(t)) cos(t), (1 + 2 cos(t)) sin(t)).

Then C is the curve in Figure 2.3.4, which is called a limaçon. The particle will traverse
this curve once as t goes from 0 to 2π. Now

v = (−(1 + 2 cos(t)) sin(t)− 2 sin(t) cos(t), (1 + 2 cos(t)) cos(t)− 2 sin2(t)),

so

‖v‖2 = v · v
= (1 + 2 cos(t))2 sin2(t) + 4(1 + 2 cos(t)) sin2(t) cos(t) + 4 sin2(t) cos2(t)

+ (1 + 2 cos(t))2 cos2(t)− 4(1 + 2 cos(t)) sin2(t) cos(t) + 4 sin4(t)

= (1 + 2 cos(t))2(sin2(t) + cos2(t)) + 4 sin2(t) cos2(t) + 4 sin4(t)

= (1 + 2 cos(t))2 + 4 sin2(t) cos2(t) + 4 sin4(t)

,
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Figure 2.3.4 A limaçon

Hence the length of C is∫ 2π

0

√
(1 + 2 cos(t))2 + 4 sin2(t) cos2(t) + 4 sin4(t) dt = 13.3649,

where the integration was performed with a computer and the final result rounded to four
decimal places. Note that integrating from 0 to 4π would find the distance the particle
travels in going around C twice, namely,∫ 4π

0

√
(1 + 2 cos(t))2 + 4 sin2(t) cos2(t) + 4 sin4(t) dt = 26.7298.

Problems

1. For each of the following, suppose a particle is moving along a curve so that its position
at time t is given by x = f(t). Find the velocity and acceleration of the particle.
(a) f(t) = (t2 + 3, sin(t)) (b) f(t) = (t2e−2t, t3e−2t, 3t)
(c) f(t) = (cos(3t2), sin(3t2)) (d) f(t) = (t cos(t2), t sin(t2), 3t cos(t2))

2. Find the curvature of the following curves at the given point.

(a) f(t) = (t, t2), t = 1 (b) f(t) = (3 cos(t), sin(t)), t =
π

4
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(c) f(t) = (cos(t), sin(t), t), t =
π

3
(d) f(t) = (cos(t), sin(t), e−t), t = 0

3. Plot the curvature for each of the following curves over the given interval I.
(a) f(t) = (t, t2), I = [−2, 2]
(b) f(t) = (cos(t), 3 sin(t)), I = [0, 2π]
(c) g(t) = ((1 + 2 cos(t)) cos(t), (1 + 2 cos(t)) sin(t)), I = [0, 2π]
(d) h(t) = (2 cos(t), sin(t), 2t), I = [0, 2π]
(e) f(t) = (4 cos(t) + sin(4t), 4 sin(t) + sin(4t)), I = [0, 2π]

4. For each of the following, suppose a particle is moving along a curve so that its position
at time t is given by x = f(t). Find the coordinates of acceleration in the direction of
the unit tangent vector and in the direction of the principal unit normal vector at the
specified point. Write the acceleration as a sum of scalar multiples of the unit tangent
vector and the principal unit normal vector.

(a) f(t) = (sin(t), cos(t)), t =
π

3
(b) f(t) = (cos(t), 3 sin(t)), t =

π

4
(c) f(t) = (t, t2), t = 1 (d) f(t) = (sin(t), cos(t), t), t =

π

3

5. Suppose a particle moves along a curve C in R3 so that its position at time t is given by
x = f(t). Let v, s, and a denote the velocity, speed, and acceleration of the particle,
respectively, and let κ be the curvature of C.
(a) Using the facts v = sT (t) and

a =
ds

dt
T (t) + s2κN(t),

show that
v × a = s3κ(T (t)×N(t)).

(b) Use the result of part (a) to show that

κ =
‖v × a‖
‖v‖3

.

6. Let H be the helix in R3 parametrized by f(t) = (cos(t), sin(t), t). Use the result from
Problem 5 to compute the curvature κ of H for any time t.

7. Let C be the elliptical helix in R3 parametrized by f(t) = (4 cos(t), 2 sin(t), t). Use the
result from Problem 5 to compute the curvature κ of C at t = π

4 .

8. Let C be the curve in R2 which is the graph of the function ϕ : R→ R. Use the result
from Problem 5 to show that the curvature of C at the point (t, ϕ(t)) is

κ =
|ϕ′′(t)|

(1 + (ϕ′(t))2)
3
2
.
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9. Let P be the graph of f(t) = t2. Use the result from Problem 8 to find the curvature
of P at (1, 1) and (2, 4).

10. Let C be the graph of f(t) = t3. Use the result from Problem 8 to find the curvature
of C at (1, 1) and (2, 8).

11. Let C be the graph of g(t) = sin(t). Use the result from Problem 8 to find the curvature
of C at

(
π
2 , 1
)

and
(
π
4 ,

1√
2

)
.

12. For each of the following, suppose a particle is moving along a curve so that its position
at time t is given by x = f(t). Find the distance traveled by the particle over the given
time interval.

(a) f(t) = (sin(t), 3 cos(t)), I = [0, 2π]

(b) f(t) = (cos(πt), sin(πt), 2t), I = [0, 4]

(c) f(t) = (t, t2), I = [0, 2]

(d) f(t) = (t cos(t), t sin(t)), I = [0, 2π]

(e) f(t) = (cos(2πt), sin(2πt), 3t2, t), I = [0, 1]

(f) f(t) = (e−t cos(πt), e−t sin(πt)), I = [−2, 2]

(g) f(t) = (4 cos(t) + sin(4t), 4 sin(t) + sin(4t)), I = [0, 2π]

13. Verify that the circumference of a circle of radius r is 2πr.

14. The curve parametrized by

f(t) = (sin(2t) cos(t), sin(2t) sin(t))

has four “petals.” Find the length of one of these petals.

15. The curve C parametrized by h(t) = (cos3(t), sin3(t)) is called a hypocycloid (see
Figure 2.2.3 in Section 2.3). Find the length of C.

16. Suppose ϕ : R→ R is continuously differentiable and let C be the part of the graph of
ϕ over the interval [a, b]. Show that the length of C is∫ b

a

√
1 + (ϕ′(t))2 dt.

17. Use the result from Problem 16 to find the length of one arch of the graph of f(t) =
sin(t).

18. Let h : R → Rn parametrize a curve C. We say C is parametrized by arc length if
‖Dh(t)‖ = 1 for all t.

(a) Let σ be the arc length function for C using the parametrization f and let σ−1 be its
inverse function. Show that the function g : R→ Rn defined by g(u) = f(σ−1(u))
parametrizes C by arc length.
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(b) Let C be the circular helix in R3 with parametrization f(t) = (cos(t), sin(t), t).
Find a function g : R→ Rn which parametrizes C by arc length.

19. Suppose f : R → Rn is continuous on the closed interval [a, b] and has coordinate
functions f1, f2, . . . , fn. We define the definite integral of f over the interval [a, b] to
be ∫ b

a

f(t)dt =

(∫ b

a

f1(t)dt,
∫ b

a

f2(t)dt, . . . ,
∫ b

a

fn(t)dt

)
.

Show that if a particle moves so its velocity at time t is v(t), then, assuming v is a
continuous function on an interval [a, b], the position of the particle for any time t in
[a, b] is given by

x(t) =
∫ t

a

v(s)ds+ x(a).

20. Suppose a particle moves along a curve in R3 so that its velocity at any time t is

v(t) = (cos(2t), sin(2t), 3t).

If the particle is at (0, 1, 0) when t = 0, use Problem 19 to determine its position for
any other time t.

21. Suppose a particle moves along a curve in R3 so that its acceleration at any time t is

a(t) = (cos(t), sin(t), 0).

If the particle is at (1, 2, 0) with velocity (0, 1, 1) at time t = 0, use Problem 19 to
determine its position for any other time t.

22. Suppose a projectile is fired from the ground at an angle α with an initial speed
v0, as shown in Figure 2.3.5. Let x(t), v(t), and a(t) be the position, velocity, and
acceleration, respectively, of the projectile at time t.

α

(0)v

Figure 2.3.5 The path of a projectile
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(a) Explain why x(0) = (0, 0), v(0) = (v0 cos(α), v0 sin(α)), and a(t) = (0,−g) for all
t, where g = 9.8 meters per second per second is the acceleration due to gravity.

(b) Use Problem 19 to find v(t).
(c) Use Problem 19 to find x(t).
(d) Show that the curve parametrized by x(t) is a parabola. That is, let x(t) = (x, y)

and show that y = ax2 + bx+ c for some constants a, b, and c.
(e) Show that the range of the projectile, that is, the horizontal distance traveled, is

R =
v0 sin(2α)

g

and conclude that the range is maximized when α = π
4 .

(f) When does the projectile hit the ground?
(g) What is the maximum height reached by the projectile? When does it reach this

height?

23. Suppose a1,a2, . . . ,am are unit vectors in Rn, m ≤ n, which are mutually orthogonal
(that is, ai ⊥ aj when i 6= j). If x is a vector in Rn with

x = x1a1 + x2a2 + · · ·+ xmam,

show that xi = x · ai, i = 1, 2, . . . ,m.


