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Best Affine Approximations

In this section we will generalize the basic ideas of the differential calculus of functions
f : R → R to functions f : R → R

n. Recall that given a function f : R → R, we
say f is differentiable at a point c if there exists an affine function A : R → R, A(x) =
m(x− c) + f(c), such that

lim
h→0

f(c+ h)−A(c+ h)
h

= 0. (2.2.1)

We call A the best affine approximation to f at c and m the derivative of f at c, denoted
f ′(c). Moreover, we call the the graph of A, that is, the line with equation

y = f ′(c)(x− c) + f(c), (2.2.2)

the tangent line to the graph of f at (c, f(c)).
The condition (2.2.1) says that the function ϕ(h) = f(c + h) − A(c + h) is o(h). In

general, we say a function ϕ : R→ R is o(h) if

lim
h→0

ϕ(h)
h

= 0. (2.2.3)

Best affine approximations
Generalizing the idea of the best affine approximation to the case of a function f : R→ R

n

requires only a slight modification of the requirement that f(c + h) − A(c + h) be o(h).
Namely, since f(c+h)−A(c+h) is a vector in Rn, we will require that ‖f(c+h)−A(c+h)‖,
instead of f(c+h)−A(c+h), be o(h). If n = 1, this will reduce to the one-variable definition
since, in that case, ‖f(c+h)−A(c+h)‖ = |f(c+h)−A(c+h)| and a function ϕ : R→ R

is o(h) if and only if |ϕ(h)| is o(h).

Definition Suppose f : R → R
n and c is a point in the domain of f . We call an affine

function A : R → R
n the best affine approximation to f at c if (1) A(c) = f(c) and (2)

‖R(h)‖ is o(h), where
R(h) = f(c+ h)−A(c+ h). (2.2.4)

Suppose f : R → R
n and A : R → R

n is an affine function for which A(c) = f(c).
Since A is affine, there exists a linear function L : R→ R

n and a vector b in Rn such that
A(t) = L(t) + b for all t in R. Since we have

f(c) = A(c) = L(c) + b, (2.2.5)
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it follows that b = f(c)− L(c). Hence, for all t in R,

A(t) = L(t) + f(c)− L(c) = L(c− t) + f(c). (2.2.6)

Moreover, if a = L(1), then, from our results in Section 1.5,

A(t) = a(t− c) + f(c). (2.2.7)

Hence
R(h) = f(c+ h)−A(c+ h) = f(c+ h)− f(c)− ah, (2.2.8)

from which it follows that

lim
h→0+

‖R(h)‖
h

= lim
h→0+

‖f(c+ h)− f(c)− ah‖
h

= lim
h→0+

∥∥∥∥f(c+ h)− f(c)− ah
h

∥∥∥∥
= lim
h→0+

∥∥∥∥f(c+ h)− f(c)
h

− a
∥∥∥∥

(2.2.9)

Thus

lim
h→0+

‖R(h)‖
h

= 0

if and only if

lim
h→0+

f(c+ h)− f(c)
h

= a.

A similar calculation from the left shows that

lim
h→0−

‖R(h)‖
h

= 0

if and only if

lim
h→0−

f(c+ h)− f(c)
h

= a.

Hence

lim
h→0

‖R(h)‖
h

= 0 (2.2.10)

if and only if

lim
h→0

f(c+ h)− f(c)
h

= a. (2.2.11)

That is, A is the best affine approximation to f at c if and only if, for all t in R,

A(t) = a(t− c) + f(c), (2.2.12)
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where

a = lim
h→0

f(c+ h)− f(c)
h

. (2.2.13)

Definition Suppose f : R→ R
n. If

lim
h→0

f(c+ h)− f(c)
h

(2.2.14)

exists, then we say f is differentiable at c and we call

Df(c) = lim
h→0

f(c+ h)− f(c)
h

(2.2.15)

the derivative of f at c.

Note that (2.2.15) is the same as the formula for the derivative in one-variable calcu-
lus. In fact, in the case n = 1, (2.2.15) is just the derivative from one-variable calculus.
However, if n > 1, then Df(c) will be a vector, not a scalar.

The following theorem summarizes our work above.

Theorem Suppose f : R → R
n and c is a point in the domain of f . Then f has a best

affine approximation A : R→ R
n at c if and only if f is differentiable at c, in which case

A(t) = Df(c)(t− c) + f(c). (2.2.16)

We saw in Section 2.1 that a limit of a vector-valued function f may be computed by
evaluating the limit of each coordinate function separately. This result has an important
consequence for computing derivatives. Suppose f : R → R

n is differentiable at c. If we
write

f(t) = (f1(t), f2(t), . . . , fn(t),

then

Df(c) = lim
h→0

f(c+ h)− f(c)
h

= lim
h→0

1
h

((f1(c+ h), f2(c+ h), . . . , fn(c+ h)− (f1(c), f2(c), . . . , fn(c))

= lim
h→0

(
f1(c+ h)− f1(c)

h
,
f2(c+ h)− f2(c)

h
, . . . ,

fn(c+ h)− fn(c)
h

)
=
(

lim
h→0

f1(c+ h)− f1(c)
h

, lim
h→0

f2(c+ h)− f2(c)
h

, . . . , lim
h→0

fn(c+ h)− fn(c)
h

)
= (f ′1(c), f ′2(c), . . . , f ′n(c)).

In words, the derivative of f is the vector whose coordinates are the derivatives of the
coordinate functions of f , reducing the problem of differentiating vector-valued functions
to the problem of differentiation in single-variable calculus.
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Proposition If f is differentiable at c and f(t) = (f1(t), f2(t), . . . , fn(t0)), then each
coordinate function fk, k = 1, 2, . . . , n, is differentiable at c and

Df(c) = (f ′1(c), f ′2(c), . . . , f ′n(c)). (2.2.17)

For an arbitrary point t at which f is differentiable, we will write,

Df(t) = lim
h→0

f(t+ h)− f(t)
h

= (f ′1(t), f ′2(t), . . . , f ′n(t)). (2.2.18)

That is, we may think of Df as a vector-valued function itself, with domain being the set
of points at which f is differentiable.

Now suppose f : R→ R
n parametrizes a curve C and is differentiable at c. If Df(c) 6=

0, then the best affine approximation

A(t) = Df(c)(t− c) + f(c)

parametrizes a line, a line which best approximates the curve C for points near f(c). On
the other hand, if Df(c) = 0, then A is a constant function with range consisting of the
single point f(c). These considerations motivate, in part, the following definitions.

Definition Suppose f : R→ R
n is differentiable on (a, b) and x = f(t) is a parametriza-

tion of a curve C for a < t < b. If Df(t) is continuous and Df(t) 6= 0 for all t in (a, b),
then we call f a smooth parametrization of C.

Definition Suppose f : R → R
n parametrizes a curve C in Rn and let A be the best

affine approximation to f at c. If f is smooth on some open interval containing c, then we
call the line in Rn parametrized by A the tangent line to C at f(c).

Example Define f : R → R
n by f(t) = (cos(t), sin(t)) for −∞ < t < ∞. Then, as we

saw in Section 2.1, f parametrizes the unit circle C centered at the origin. Now

Df(t) = (− sin(t), cos(t)),

so Df(t) is continuous and ‖Df(t)‖ = 1 for all t. Thus f is a smooth parametrization of
C. For example,

Df
(π

6

)
=

(
−1

2
,

√
3

2

)
and

f
(π

6

)
=

(√
3

2
,

1
2

)
,

so the best affine approximation to f at t = π
6 is

A(t) =

(
−1

2
,

√
3

2

)(
t− π

6

)
+

(√
3

2
,

1
2

)
.

Figure 2.2.1 shows C along with the tangent line to C at t = π
6 .
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Figure 2.2.1 Unit circle with tangent line at
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Example Suppose we define g : R → R

2 by g(t) = (sin(2πt), cos(2πt)), −∞ < t < ∞.
Then, as we saw in Section 2.1, g parametrizes the same circle C as f in the previous
example. Moreover,

Dg(t) = (2π cos(2πt),−2π sin(2πt))

and ‖Dg(t)‖ = 1 for all t, so g is a smooth parametrization of C. However,

g

(
1
6

)
=

(√
3

2
,

1
2

)
= f

(π
6

)
;

that is, g(t) is at
(√

3
2 ,

1
2

)
when t = 1

6 , whereas f(t) is at
(√

3
2 ,

1
2

)
when t = π

6 . Moreover,

Dg

(
1
6

)
= (π,−π

√
3),

so the best affine approximation to g at t = 1
6 is

B(t) = (π,−π
√

3)
(
t− 1

6

)
+

(√
3

2
,

1
2

)
.

Note that although A, the best affine approximation to f at t = π
6 , and B, the best affine

approximation to g at t = 1
6 , are different functions, they parametrize the same line since

(π,−π
√

3) = −2π

(
−1

2
,

√
3

2

)
.



6 Best Affine Approximations Section 2.2

-5
-2.5

0
2.5

5
x

-5

-2.5

0

2.5
5

y

-2

0

2

4

6

z

-5
-2.5

0
2.5

5
x

-5

-2.5

0

2.5
5

y

Figure 2.2.2 Helix with tangent line at
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Example Consider the helix C parametrized by f : R→ R
3 defined by

f(t) = (4 cos(t), 4 sin(t), t).

Then
Df(t) = (−4 sin(t), 4 cos(t), 1).

Since Df is continuous and

‖Df(t)‖ =
√

16 sin2(t) + 16 cos2(t) + 1 =
√

17

for all t, f is a smooth parametrization of C. Now, for example,

Df
(π

4

)
=
(
− 4√

2
,

4√
2
, 1
)

= (−2
√

2, 2
√

2, 1)

and

f
(π

4

)
=
(

4√
2
,

4√
2
,
π

4

)
=
(

2
√

2, 2
√

2,
π

4

)
,

so the best affine approximation to f at t = π
4 is

A(t) = (−2
√

2, 2
√

2, 1)
(
t− π

4

)
+
(

2
√

2, 2
√

2,
π

4

)
.

The helix C and the line parametrized by A, namely, the tangent line to C at t = π
4 , are

shown in Figure 2.2.2.
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Example Let C be the curve in R2 parametrized by

h(t) = (cos3(t), sin3(t)).

Then
Dh(t) = (−3 cos2(t) sin(t), 3 sin2(t) cos(t)).

HenceDh is continuous for all t, but h is not a smooth parametrization of C sinceDh(t) = 0
whenever t is an integer multiple of π

2 . These points correspond to the sharp corners of
C at (1, 0), (0, 1), (−1, 0, and (0,−1), as shown in Figure 2.2.3. However, h is a smooth
parametrization of the four arcs of C which are parametrized by restricting h to the open
intervals

(
0, π2

)
,
(
π
2 , π

)
,
(
π, 3π

2

)
, and

(
3π
2 , 2π

)
. Hence, for example, noting that

Dh

(
3π
4

)
=
(
− 3

2
√

2
,− 3

2
√

2

)
and

h

(
3π
4

)
=
(
− 1

2
√

2
,

1
2
√

2

)
,

we find that the best affine approximation to h at t = 3π
4 is

A(t) =
(
− 3

2
√

2
,− 3

2
√

2

)(
t− 3π

4

)
+
(
− 1

2
√

2
,

1
2
√

2

)
.

The tangent line parametrized by A is shown in Figure 2.2.3.
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Proposition Suppose f : R → R
n, g : R → R

n, and ϕ : R → R are all differentiable.
Then

D(f(t) + g(t)) = Df(t) +Dg(t), (2.2.19)

D(f(t)− g(t)) = Df(t)−Dg(t), (2.2.20)

D(ϕ(t)f(t)) = ϕ(t)Df(t) + ϕ′(t)f(t), (2.2.21)

d

dt
(f(t) · g(t)) = f(t) ·Dg(t) +Df(t) · g(t), (2.2.22)

and
D(f(ϕ(t)) = Df(ϕ(t))ϕ′(t)). (2.2.23)

Note that all of the statements in this proposition reduce to familiar results from
one-variable calculus when n = 1. To verify these results, let

f(t) = (f1(t), f2(t), . . . , fn(t))

and
g(t) = (g1(t), g2(t), . . . , gn(t)).

Then

D(f(t) + g(t)) = D(f1(t) + g1(t), f2(t) + g2(t), . . . , fn(t) + gn(t))
= (f ′1(t) + g′1(t), f ′2(t) + g′2(t), . . . , f ′n(t) + g′n(t))
= (f ′1(t), f ′2(t), . . . , f ′n(t)) + (g′1(t), g′2(t), . . . , g′n(t))
= Df(t) +Dg(t),

(2.2.24)

verifying (2.2.19). The verification of (2.1.20) is similar. The demonstrations of (2.2.21)
and (2.1.22), both of which are generalizations of the product rule from one-variable calcu-
lus, follow easily from that result; we will check (2.1.22) here and leave (2.2.21) for Problem
13. Using the product rule, we have

d

dt
(f(t) · g(t)) =

d

dt
(f1(t)g1(t) + f2(t)g2(t) + · · ·+ fn(t)gn(t))

= f1(t)g′1(t) + f ′1(t)g1(t) + f2(t)g′2(t) + f ′2(t)g2(t) + · · ·
+ fn(t)g′n(t) + f ′n(t)gn(t)

= f(t) ·Dg(t) +Df(t) · g(t).

(2.2.25)

Finally, (2.2.23), a generalization of the chain rule from one-variable calculus, follows
directly from that result:

D(f(ϕ(t))) = D(f1(ϕ(t)), f2(ϕ(t)), . . . , fn(ϕ(t)))
= (f ′1(ϕ(t))ϕ′(t), f ′2(ϕ(t))ϕ′(t), . . . , f ′n(ϕ(t))ϕ′(t))
= Df(ϕ(t))ϕ′(t).

(2.2.26)
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Reparametrizations
We have seen above that the parametrization of a curve C in Rn is not unique. For example,
we saw that both f(t) = (cos(t), sin(t)) and g(t) = (sin(2πt), cos(2πt)) parametrize the unit
circle centered at the origin. However, we also noted that the best affine approximations
for the two parametrizations, although distinct functions, nevertheless parametrize the
same line at

(√
3

2 ,
1
2

)
, the line we have been calling the tangent line. We should suspect

that this will be the case in general, that is, the tangent line to a curve C at a particular
point should not depend on the particular parametrization of C used in the computation.
While avoiding some technicalities, we will provide some justification for these ideas.

Definition Suppose x = f(t), a < t < b, is a smooth parametrization of a curve C in
R
n. Suppose ϕ : R→ R has domain (c, d), range (a, b), and ϕ′ exists and is continuous on

(c, d). If ϕ′(t) 6= 0 for all t in (c, d), then we call g(t) = f(ϕ(t)) a reparametrization of f .

Example Let f(t) = (cos(t), sin(t)) and g(t) = (sin(2πt), cos(2πt)). Since

sin(t) = cos
(π

2
− t
)

and
cos(t) = sin

(π
2
− t
)
,

if follows that
g(t) = f

(π
2
− 2πt

)
= f(ϕ(t)),

where
ϕ(t) =

π

2
− 2πt.

That is, g is a reparametrization of f .

Now if x = f(t), a < t < b, is a smooth parametrization of a curve C in Rn and
g(t) = f(ϕ(t)), c < t < d, is a reparametrization of f , then for any α in (c, d),

Dg(α) = D(f(ϕ(α)) = Df(ϕ(α))ϕ′(α). (2.2.27)

Hence Dg(α) and Df(ϕ(α)) are parallel, the former being the latter multiplied by the
scalar ϕ′(α). In other words, the lines parametrized by the best affine approximation to g
at t = α and the best affine approximation to f at t = ϕ(α) are the same.

Example In our previous example, we have

ϕ′(t) = −2π,

so, for any α, we should have

Dg(α) = −2πDf(ϕ(α)).

This agrees with our previous calculation using α = 1
6 .
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Tangent and normal vectors

If f : R → R
n is a smooth parametrization of a curve C, then, for any t, Df(t) is the

direction of the tangent line to C at f(t). Moreover, from our discussion above, if g is a
reparametrization of f , say, g(t) = f(ϕ(t)), then Dg(t) and Df(ϕ(t)) will have the same
or opposite direction. In other words, the direction of the tangent line either remains the
same or is reversed under reparametrization. On the other hand,

‖Dg(t)‖ = ‖Df(ϕ(t))‖|ϕ′(t)|. (2.2.28)

As we should expect, although both Dg(t) and Df(ϕ(T )) are tangent to the curve at g(t),
their lengths do not have to be the same. In Section 2.3 we will discuss how we may think
of this in terms of the speed of a particle moving along the curve C, with its position on
C at time t given by either g(t) or f(t).

For these and other considerations, it is useful to define a standard tangent vector,
unique up to a change in sign.

Definition If f : R→ R
n is a smooth parametrization of a curve C, then we call

T (t) =
Df(t)
‖Df(t)‖

(2.2.29)

the unit tangent vector to C at f(t).

From the preceding, we must keep in mind that the unit tangent vector T (t) is always
in reference to some parametrization f of the curve C. Essentially, this is a choice of an
orientation for the curve, that is, the direction of motion for a particle whose position at
time t is given by f(t).

If x = f(t), a < t < b, is a smooth parametrization of a curve C in Rn, then, by
definition, ‖T (t)‖ = 1 for all t in (a, b). Hence

T (t) · T (t) = 1 (2.2.30)

for all t in (a, b). Differentiating (2.2.30), we have

d

dt
(T (t) · T (t)) =

d

dt
1 = 0, (2.2.31)

and so, using (2.2.22), we have

0 =
d

dt
(T (t) · T (t)) = T (t) ·DT (t) +DT (t) · T (t) = 2DT (t) · T (t) (2.2.32)

for all t in (a, b). Thus T (t) ·DT (t) = 0 for a < t < b. In other words, DT (t) is orthogonal
to T (t) for all t in (a, b).
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Definition If f : R → R
n is a smooth parametrization of a curve C, T (t) is the unit

tangent vector to C at f(t), and DT (t) 6= 0, then we call

N(t) =
DT (t)
‖DT (t)‖

(2.2.33)

the principal unit normal vector to C at f(t).

Example Consider the parametrization of the circle in R2 with radius 2 and center at
the origin given by

f(t) = (2 cos(4t), 2 sin(4t)).

Then
Df(t) = (−8 sin(4t), 8 cos(4t))

and

‖Df(t)‖ =
√

64 sin2(4t) + 64 cos2(4t) = 8.

Thus the unit tangent vector is

T (t) =
Df(t)
‖Df(t)‖

= (− sin(4t), cos(4t)).

Moreover,
DT (t) = (−4 cos(t),−4 sin(4t)),

so

‖DT (t)‖ =
√

16 cos2(4t) + 16 sin2(4) = 4,

and the principal unit normal vector is

N(t) =
DT (t)
‖DT (t)‖

= (− cos(4t),− sin(4t)).

For example, when t = π
24 we have

f
( π

24

)
= (
√

3, 1),

T
( π

24

)
=

(
−1

2
,

√
3

2

)
,

and

N
( π

24

)
=

(
−
√

3
2
,−1

2

)
.
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Figure 2.2.4 A circle with unit tangent and normal vectors

Note that, for any value of t, f(t) ⊥ T (t), T (t) ⊥ N(t) (as is always the case), and
N(t) = −1

2f(t). See Figure 2.2.4.

Example Consider the elliptical helix H parametrized by

g(t) = (cos(t), 2 sin(t), t).

Then
Dg(t) = (− sin(t), 2 cos(t), 1),

so
‖Dg(t)‖ =

√
sin2(t) + 4 cos2(t) + 1

=
√

sin2(t) + cos2(t) + 3 cos2(t) + 1

=
√

2 + 3 cos2(t)

=

√
2 +

3
2

(1 + cos(2t))

=

√
7 + 3 cos(2t)

2
.

Hence the unit tangent vector is

T (t) =

√
2

7 + 3 cos(2t)
(− sin(t), 2 cos(t), 1).
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Figure 2.2.5 An elliptical helix with unit tangent and normal vectors

Differentiating using (2.2.21), we have

DT (t) =

√
2

7 + 3 cos(2t)
(− cos(t),−2 sin(t), 0)

+
1
2

(
2

7 + 3 cos(2t)

)− 1
2
(

12 sin(2t)
(7 + 3 cos(2t))2

)
(− sin(t), 2 cos(t), 1)

=

√
2

7 + 3 cos(2t)
(− cos(t),−2 sin(t), 0) +

3
√

2 sin(2t)
(7 + 3 cos(2t))

3
2

(− sin(t), 2 cos(t), 1).

For example, at t = π
4 we have

g
(π

4

)
=
(

1√
2
,
√

2,
π

4

)
,

T
(π

4

)
=

1√
7

(−1, 2,
√

2),

and
DT

(π
4

)
=

1√
7

(−1,−2, 0) +
3

7
3
2

(−1, 2,
√

2) =
1

7
√

7
(−10,−8, 3

√
2).
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Thus ∥∥∥DT (π
4

)∥∥∥ =
1

7
√

7

√
100 + 64 + 18 =

√
26
7
,

so the principal unit normal vector at t = π
4 is

N
(π

4

)
=

DT
(
π
4

)∥∥DT (π4 )∥∥ =
1√
182

(−10,−8, 3
√

2).

See Figure 2.2.5.

As the last example shows, the computations involved in finding the unit tangent
vector and the principal unit normal vector can become involved. In fact, that is why
we computed the principal unit normal vector only in the particular case t = π

4 instead
of writing out the general formula for N(t). In general these computations can become
involved enough that it is often wise to make use of a computer algebra system.

Problems

1. Find the derivative of each of the following functions.

(a) f(t) = (t3, t, 2t+ 4) (b) g(t) = (3t cos(2t), 4t sin(2t))

(c) h(t) = (4t3 − 3, sin(t), e−2t) (d) f(t) = (e−t sin(3t), e−t cos(3t), te−t)

2. For each of the following, find the best affine approximation to f at the given point.

(a) f(t) = (t, t3), t = 2 (b) f(t) = (3 sin(2t), 4 cos(2t)), t =
π

6

(c) f(t) = (cos(t), sin(t), cos(2t)), t =
π

3
(d) f(t) = (2 cos(2t), 3 sin(2t), 3t), t = 0

3. Let f(t) = (2 cos(πt), 3 sin(πt)) parametrize an ellipse E in R2. Plot E along with the
tangent line at f

(
2
3

)
.

4. Let f(t) = ((1 + 2 cos(t)) cos(t), (1 + 2 cos(t)) sin(t)) parametrize a curve C in R2. Plot
C along with the tangent line at f

(
π
6

)
.

5. Let h(t) =
(
sin(2πt), cos(2πt), t2

)
parametrize a circular helix H in R3. Plot H along

with the tangent line at h
(

3
2

)
.

6. Let g(t) = (cos(πt),
√
t, sin(πt)) parametrize a curve C in R3. Plot C along with the

tangent line at g
(

1
4

)
.

7. Suppose f : R → R
2 is defined by f(t) = (t, ϕ(t)), where ϕ : R → R is differentiable,

and let C be the curve in R2 parametrized by f . Show that the tangent line to C at
f(c) is the same as the line tangent to the graph of ϕ at (c, ϕ(c).

8. Let C be the curve in R2 parametrized by f(t) = (t3, t6), −∞ < t <∞. Is f a smooth
parametrization of C? If not, can you find a smooth parametrization of C?
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9. Let C be the curve in R2 parametrized by f(t) = (t2, t2), −∞ < t <∞. Show that f
is not a smooth parametrization of C. Where is the problem? Plot C and identify the
location of the problem.

10. Let v 6= 0 and p be vectors in Rn and let C be the curve in Rn parametrized by
f(t) = tv + p. What is the best affine approximation to f at t = t0?

11. For each of the following, find the unit tangent vector and the principal unit normal
vector at the indicated point.

(a) f(t) = (t, t2), t = 1 (b) g(t) = (3 sin(2t), 3 cos(2t)), t =
π

3

(c) f(t) = (2 cos(t), 4 sin(t)), t =
π

4
(d) h(t) = (cos(πt), 2 sin(πt)), t =

3
4

(e) g(t) = (cos(t), sin(t), t), t =
π

3
(f) f(t) = (2 sin(t), 3 cos(2t), 2t), t =

π

4

(g) f(t) = (sin(πt),− cos(πt), 3t), t =
1
2

(h) g(t) = (cos(πt2), sin(πt2), t2), t = 1

(i) f(t) = (t, t2, t3), t = 2

12. Use the fact that f(t) = (b cos(t), b sin(t)) parametrizes a circle of radius b to show that
a radius of a circle is always perpendicular to the tangent line at the point where the
radius touches the circle.

13. Verify (2.2.21); that is, show that if f : R→ R
n and ϕ : R→ R are both differentiable,

then
D(ϕ(t)f(t)) = ϕ(t)Df(t) + ϕ′(t)f(t).

14. Suppose f : R→ R
3 and g : R→ R

3 are both differentiable. Show that

D(f(t)× g(t)) = f(t)×Dg(t) +Df(t)× g(t),

yet another version of the product rule.

15. The following figure illustrates a curve in R2 parametrized by some function f : R →
R

2. If T is the unit tangent vector at the indicated point on the curve, then either M
or N is the principal unit normal vector at that point. Which one is it?

T
N

M


