The Calculus of Functions

of
Several Variables

Section 2.1

Curves

Now that we have a basic understanding of the geometry of \mathbb{R}^{n}, we are in a position to start the study of calculus of more than one variable. We will break our study into three pieces. In this chapter we will consider functions $f: \mathbb{R} \rightarrow \mathbb{R}^{n}$, in Chapter 3 we will study functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, and finally in Chapter 4 we will consider the general case of functions $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$.

Parametrizations of curves

We begin with some terminology and notation. Given a function $f: \mathbb{R} \rightarrow \mathbb{R}^{n}$, let

$$
\begin{equation*}
f_{k}(t)=k \text { th coordinate of } f(t) \tag{2.1.1}
\end{equation*}
$$

for $k=1,2, \ldots, n$. We call $f_{k}: \mathbb{R} \rightarrow \mathbb{R}$ the k th coordinate function of f. Note that f_{k} has the same domain as f and that, for any point t in the domain of f,

$$
\begin{equation*}
f(t)=\left(f_{1}(t), f_{2}(t), \ldots, f_{n}(t)\right) \tag{2.1.2}
\end{equation*}
$$

If the domain of f is an interval I, then the range of f, that is, the set

$$
\begin{equation*}
C=\{\mathbf{x}: \mathbf{x}=f(t) \text { for some } t \text { in } I\} \tag{2.1.3}
\end{equation*}
$$

is called a curve with parametrization f. The equation $\mathbf{x}=f(t)$, where \mathbf{x} is in \mathbb{R}^{n}, is a vector equation for C and, writing $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, the equations

$$
\begin{gather*}
x_{1}=f_{1}(t), \\
x_{2}=f_{2}(t), \\
\vdots \tag{2.1.4}\\
x_{n}=f_{n}(t),
\end{gather*}
$$

are parametric equations for C.
Example Consider $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$ defined by

$$
f(t)=(\cos (t), \sin (t))
$$

for $0 \leq t \leq 2 \pi$. Then for every value of $t, f(t)$ is a point on the circle C of radius 1 with center at $(0,0)$. Note that $f(0)=(1,0), f\left(\frac{\pi}{2}\right)=(0,1), f(\pi)=(-1,0), f\left(\frac{3 \pi}{2}\right)=(0,-1)$,

Figure 2.1.1 $f(t)=(\cos (t), \sin (t))$
and $f(2 \pi)=(1,0)=f(0)$. In fact, as t goes from 0 to $2 \pi, f(t)$ traverses C exactly once in the counterclockwise direction. Thus f is a parametrization of the unit circle C. If we denote a point in \mathbb{R}^{2} by (x, y), then

$$
\begin{aligned}
& x=\cos (t) \\
& y=\sin (t)
\end{aligned}
$$

are parametric equations for C. See Figure 2.1.1. The coordinate functions are

$$
\begin{aligned}
f_{1}(t) & =\cos (t) \\
f_{2}(t) & =\sin (t)
\end{aligned}
$$

although we frequently write these as simply

$$
\begin{aligned}
x(t) & =\cos (t) \\
y(t) & =\sin (t)
\end{aligned}
$$

Example Consider $g: \mathbb{R} \rightarrow \mathbb{R}^{2}$ defined by

$$
g(t)=(\sin (2 \pi t), \cos (2 \pi t))
$$

for $0 \leq t \leq 2$. Then g also parametrizes the unit circle C centered at the origin, the same as f in the previous example. However, there is a difference: $g(0)=(0,1), g\left(\frac{1}{4}\right)=(1,0)$,

Figure 2.1.2 The ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
$g\left(\frac{1}{2}\right)=(0,-1), g\left(\frac{3}{4}\right)=(-1,0)$, and $g(1)=(0,1)=g(0)$, at which point g starts to repeat its values. Hence $g(t)$, starting at $(0,1)$, traverses C twice in the clockwise direction as t goes from 0 to 2 .
Example More generally, suppose a, b, and α are real numbers, with $a>0, b>0$, and $\alpha \neq 0$, and let

$$
\begin{aligned}
x(t) & =a \cos (\alpha t) \\
y(t) & =b \sin (\alpha t)
\end{aligned}
$$

Then

$$
\frac{(x(t))^{2}}{a^{2}}+\frac{(y(t))^{2}}{b^{2}}=\cos ^{2}(\alpha t)+\sin ^{2}(\alpha t)=1
$$

so $(x(t), y(t))$ is a point on the ellipse E with equation

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

shown in Figure 2.1.2. Thus the function

$$
f(t)=(a \cos (\alpha t), b \cos (\alpha t))
$$

parametrizes the ellipse E, traversing the complete ellipse as t goes from 0 to $\left|\frac{2 \pi}{\alpha}\right|$.
Example Define $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$ by

$$
f(t)=(t \cos (t), t \sin (t))
$$

for $-\infty<t<\infty$. Then for negative values of $t, f(t)$ spirals into the origin as t increases, while for positive values of $t, f(t)$ spirals away from the origin. Part of this curve parametrized by f is shown in Figure 2.1.3.

Figure 2.1.3 The spiral $f(t)=(t \cos (t), t \sin (t))$ for $-4 \pi \leq t \leq 4 \pi$

Example Define $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$ by

$$
f(t)=(3-4 t, 2+3 t)
$$

for $-\infty<t<\infty$. Then

$$
f(t)=t(-4,3)+(3,2)
$$

so f is a parametrization of the line through the point $(3,2)$ in the direction of $(-4,3)$.
In general, a function $f: \mathbb{R} \rightarrow \mathbb{R}^{n}$ defined by $f(t)=t \mathbf{v}+\mathbf{p}$, where $\mathbf{v} \neq 0$ and \mathbf{p} are vectors in \mathbb{R}^{n}, parametrizes a line in \mathbb{R}^{n}.
Example Suppose $g: \mathbb{R} \rightarrow \mathbb{R}^{3}$ is defined by

$$
g(t)=(4 \cos (t), 4 \sin (t), t)
$$

for $-\infty<t<\infty$. If we denote the coordinate functions by

$$
\begin{aligned}
& x(t)=4 \cos (t), \\
& y(t)=4 \sin (t), \\
& z(t)=t,
\end{aligned}
$$

then

$$
(x(t))^{2}+(y(t))^{2}=16 \cos ^{2}(t)+16 \sin ^{2}(t)=16
$$

Hence $g(t)$ always lies on a cylinder of radius 1 centered about the z-axis. As t increases, $g(t)$ rises steadily as it winds around this cylinder, completing one trip around the cylinder

Figure 2.1.4 The helix $f(t)=(4 \cos (t), 4 \sin (t), t),-2 \pi \leq t \leq 2 \pi$
over every interval of length 2π. In other words, g parametrizes a helix, part of which is shown in Figure 2.1.4.

Limits in \mathbb{R}^{n}

As was the case in one-variable calculus, limits are fundamental for understanding ideas such as continuity and differentiability. We begin with the definition of the limit of a sequence of points in \mathbb{R}^{m}.
Definition Let $\left\{\mathbf{x}_{n}\right\}$ be a sequence of points in \mathbb{R}^{m}. We say that the limit of $\left\{\mathbf{x}_{n}\right\}$ as n approaches infinity is \mathbf{a}, written $\lim _{n \rightarrow \infty} \mathbf{x}_{n}=\mathbf{a}$, if for every $\epsilon>0$ there is a positive integer N such that

$$
\begin{equation*}
\left\|\mathbf{x}_{n}-\mathbf{a}\right\|<\epsilon \tag{2.1.5}
\end{equation*}
$$

whenever $n>N$.
Notice that this definition involves only a slight modification of the definition for the limit of a sequence of real numbers, namely, the use of the norm of a vector instead of the

Figure 2.1.5 Points $\left(1-\frac{1}{n}, \frac{2}{n}\right)$ approaching $(1,0)$
absolute value of a real number in (2.1.5). In words, $\lim _{n \rightarrow \infty} \mathbf{x}_{n}=\mathbf{a}$ if, given any $\epsilon>0$, we can always find a point in the sequence beyond which all terms of the sequence lie within $B^{n}(\mathbf{a}, \epsilon)$, the open ball of radius ϵ centered at \mathbf{a}.

Example Suppose

$$
\mathbf{x}_{n}=\left(1-\frac{1}{n}, \frac{2}{n}\right)
$$

for $n=1,2,3, \ldots$. Since

$$
\lim _{n \rightarrow \infty}\left(1-\frac{1}{n}\right)=1
$$

and

$$
\lim _{n \rightarrow \infty} \frac{2}{n}=0
$$

we should have

$$
\lim _{n \rightarrow \infty} \mathbf{x}_{n}=(1,0)
$$

To verify this, we first note that

$$
\left\|\mathbf{x}_{n}-(1,0)\right\|=\left\|\left(-\frac{1}{n}, \frac{2}{n}\right)\right\|=\sqrt{\frac{1}{n^{2}}+\frac{4}{n^{2}}}=\frac{\sqrt{5}}{n} .
$$

Hence $\left\|\mathbf{x}_{n}-(1,0)\right\|<\epsilon$ whenever $n>\frac{\sqrt{5}}{\epsilon}$. That is, if we let N be any integer greater than or equal to $\frac{\sqrt{5}}{\epsilon}$, then $\left\|\mathbf{x}_{n}-(1,0)\right\|<\epsilon$ whenever $n>N$, verifying that

$$
\lim _{n \rightarrow \infty} \mathbf{x}_{n}=(1,0)
$$

See Figure 2.1.5.
Put another way, the definition of the limit of a sequence in \mathbb{R}^{m} says that a sequence $\left\{\mathbf{x}_{n}\right\}$ in \mathbb{R}^{m} converges to \mathbf{a} in \mathbb{R}^{m} if and only if the sequence of real numbers $\left\{\left\|\mathbf{x}_{n}-\mathbf{a}\right\|\right\}$
converges to 0 . That is, $\lim _{n \rightarrow \infty} \mathbf{x}_{n}=\mathbf{a}$ if and only if $\lim _{n \rightarrow \infty}\left\|\mathbf{x}_{n}-\mathbf{a}\right\|=0$. Moreover, if we let $\mathbf{x}_{n}=\left(x_{n 1}, x_{n 2}, \ldots, x_{n m}\right)$ and $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{m}\right)$, then

$$
\begin{equation*}
\left\|\mathbf{x}_{n}-\mathbf{a}\right\|=\sqrt{\left(x_{n 1}-a_{1}\right)^{2}+\left(x_{n 2}-a_{2}\right)^{2}+\cdots+\left(x_{n m}-a_{m}\right)^{2}} \tag{2.1.6}
\end{equation*}
$$

so $\lim _{n \rightarrow \infty}\left\|\mathbf{x}_{n}-\mathbf{a}\right\|=0$ if and only if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sqrt{\left(x_{n 1}-a_{1}\right)^{2}+\left(x_{n 2}-a_{2}\right)^{2}+\cdots+\left(x_{n m}-a_{m}\right)^{2}}=0 \tag{2.1.7}
\end{equation*}
$$

But (2.1.7) can occur only when $\lim _{n \rightarrow \infty}\left(x_{n k}-a_{k}\right)^{2}=0$ for $k=1,2, \ldots, m$. Hence $\lim _{n \rightarrow \infty} \mathbf{x}_{n}=$ a if and only if $\lim _{n \rightarrow \infty} x_{n k}=a_{k}$ for $k=1,2, \ldots, m$.
Proposition Suppose $\left\{\mathbf{x}_{n}\right\}$ is a sequence in $\mathbb{R}^{m}, \mathbf{x}_{n}=\left(x_{n 1}, x_{n 2}, \ldots, x_{n m}\right)$, and $\mathbf{a}=$ $\left(a_{1}, a_{2}, \ldots, a_{m}\right)$. Then $\lim _{n \rightarrow \infty} \mathbf{x}_{n}=\mathbf{a}$ if and only if $\lim _{n \rightarrow \infty} x_{n k}=a_{k}$ for $k=1,2, \ldots, m$.

This proposition tells us that to compute the limit of a sequence in \mathbb{R}^{m}, we need only compute the limit of each coordinate separately, thus reducing the problem of computing limits in \mathbb{R}^{m} to the problem of finding limits of sequences of real numbers.
Example If

$$
\mathbf{x}_{n}=\left(\frac{2-n}{n^{2}}, \sin \left(\frac{1}{n}\right), \cos \left(\frac{3}{n}\right)\right)
$$

$n=1,2,3, \ldots$, then

$$
\lim _{n \rightarrow \infty} \mathbf{x}_{n}=\left(\lim _{n \rightarrow \infty} \frac{2-n}{n^{2}}, \lim _{n \rightarrow \infty} \sin \left(\frac{1}{n}\right), \lim _{n \rightarrow \infty} \cos \left(\frac{3}{n}\right)\right)=(0,0,1)
$$

We may now define the limit of a function $f: \mathbb{R} \rightarrow \mathbb{R}^{m}$ at a real number c. Notice that the definition is identical to the definition of a limit for a real-valued function $f: \mathbb{R} \rightarrow \mathbb{R}$.

Definition Let c be a real number, let I be an open interval containing c, and let $J=\{t: t$ is in $I, t \neq c\}$. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}^{m}$ is defined for all t in J. Then we say that the limit of $f(t)$ as t approaches c is \mathbf{a}, denoted $\lim _{t \rightarrow c} f(t)=\mathbf{a}$, if for every sequence of real numbers $\left\{t_{n}\right\}$ in J,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} f\left(t_{n}\right)=\mathbf{a} \tag{2.1.8}
\end{equation*}
$$

whenever $\lim _{n \rightarrow \infty} t_{n}=c$.
As in one-variable calculus, we may define the limit of $f(t)$ as t approaches c from the right, denoted

$$
\lim _{t \rightarrow c^{+}} f(t)
$$

by restricting to sequences $\left\{t_{n}\right\}$ with $t_{n}>c$ for $n=1,2,3, \ldots$, and the limit of $f(t)$ as t approaches c from the left, denoted

$$
\lim _{t \rightarrow c^{-}} f(t)
$$

by restricting to sequences $\left\{t_{n}\right\}$ with $t_{n}<c$ for $n=1,2,3, \ldots$. Moreover, the following useful proposition follows immediately from our definition and the previous proposition.
Proposition Suppose $f: \mathbb{R} \rightarrow \mathbb{R}^{m}$ with

$$
f(t)=\left(f_{1}(t), f_{2}(t), \ldots, f_{m}(t)\right)
$$

The for any real number c,

$$
\begin{equation*}
\lim _{t \rightarrow c} f(t)=\left(\lim _{t \rightarrow c} f_{1}(t), \lim _{t \rightarrow c} f_{2}(t), \ldots, \lim _{t \rightarrow c} f_{m}(t)\right) \tag{2.1.9}
\end{equation*}
$$

Hence the problem of computing limits for functions $f: \mathbb{R} \rightarrow \mathbb{R}^{m}$ reduces to the problem of computing limits of the coordinate functions $f_{k}: \mathbb{R} \rightarrow \mathbb{R}, k=1,2, \ldots, m$, a familiar problem from one-variable calculus. The analogous statements for limits from the right and left also hold.
Example If $f(t)=\left(t^{2}-1, \sin (t), \cos (t)\right)$ is a function from \mathbb{R} to \mathbb{R}^{3}, then, for example,

$$
\lim _{t \rightarrow \pi} f(t)=\left(\lim _{t \rightarrow \pi}\left(t^{2}-1\right), \lim _{t \rightarrow \pi} \sin (t), \lim _{t \rightarrow \pi} \cos (t)\right)=\left(\pi^{2}-1,0,-1\right)
$$

Definitions for continuity also follow the pattern of the related definitions in onevariable calculus.

Definition Suppose $f: \mathbb{R} \rightarrow \mathbb{R}^{m}$. We say f is continuous at a point c if

$$
\begin{equation*}
\lim _{t \rightarrow c} f(t)=f(c) \tag{2.1.10}
\end{equation*}
$$

We say f is continuous from the right at c if

$$
\begin{equation*}
\lim _{t \rightarrow c^{+}} f(t)=f(c) \tag{2.1.11}
\end{equation*}
$$

and continuous from the left at c if

$$
\begin{equation*}
\lim _{t \rightarrow c^{-}} f(t)=f(c) \tag{2.1.12}
\end{equation*}
$$

We say f is continuous on an open interval (a, b) if f is continuous at every point c in (a, b) and we say f is continuous on a closed interval $[a, b]$ if f is continuous on the open interval (a, b), continuous from the right at a, and continuous from the left at b.

$$
\text { If } f(t)=\left(f_{1}(t), f_{2}(t), \ldots, f_{m}(t)\right) \text {, then } f \text { is continuous at a point } c \text { if and only if }
$$

$$
\lim _{t \rightarrow c} f(t)=\left(\lim _{t \rightarrow c} f_{1}(t), \lim _{t \rightarrow c} f_{2}(t), \ldots, \lim _{t \rightarrow c} f_{m}(t)=f(c)=\left(f_{1}(c), f_{2}(c), \ldots, f_{m}(c)\right)\right.
$$

which is true if and only if $\lim _{t \rightarrow c} f_{k}(t)=f_{k}(c)$ for $k=1,2, \ldots, m$. In other words, we have the following useful proposition.

Proposition A function $f: \mathbb{R} \rightarrow \mathbb{R}^{m}$ with $f(t)=\left(f_{1}(t), f_{2}(t), \ldots, f_{m}(t)\right)$ is continuous at a point c if and only if the coordinate functions $f_{1}, f_{2}, \ldots, f_{m}$ are each continuous at c.

Similar statements hold for continuity from the right and from the left.
Example The function $f: \mathbb{R} \rightarrow \mathbb{R}^{3}$ defined by

$$
f(t)=\left(\sin \left(t^{2}\right), t^{3}+4, \cos (t)\right)
$$

is continuous on the interval $(-\infty, \infty)$ since each of its coordinate functions is continuous on $(-\infty, \infty)$.

Problems

1. Plot the curves parametrized by the following functions over the specified intervals I.
(a) $f(t)=(3 t+1,2 t-1), I=[-5,5]$
(b) $g(t)=\left(t, t^{2}\right), I=[-3,3]$
(c) $f(t)=(3 \cos (t), 3 \sin (t)), I=[0,2 \pi]$
(d) $h(t)=(3 \cos (t), 3 \sin (t)), I=[0, \pi]$
(e) $f(t)=(4 \cos (2 t), 2 \sin (2 t), I=[0, \pi]$
(f) $g(t)=(-4 \cos (t), 2 \sin (t)), I=[0, \pi]$
(g) $h(t)=(t \sin (3 t), t \cos (3 t)), I=[-\pi, \pi]$
2. Plot the curves parametrized by the following functions over the specified intervals I.
(a) $f(t)=(t+1,2 t-1,3 t), I=[-4,4]$
(b) $g(t)=(\cos (t), t, \sin (t)), I=[0,4 \pi]$
(c) $f(t)=(t \cos (2 t), t \sin (2 t), t), I=[-10,10]$
(d) $h(t)=(\cos (2 t), \sin (2 t), \sqrt{t}), I=[0,9]$
3. Plot the curves parametrized by the following functions over the specified intervals I.
(a) $f(t)=(\cos (4 \pi t), \sin (5 \pi t)), I=[-0.5,0.5]$
(b) $f(t)=(\cos (6 \pi t), \sin (7 \pi t)), I=[-0.5,0.5]$
(c) $h(t)=\left(\cos ^{3}(t), \sin ^{3}(t)\right), I=[0,2 \pi]$
(d) $g(t)=(\cos (2 \pi t), \sin (2 \pi t), \sin (4 \pi t)), I=[0,1]$
(e) $f(t)=(\sin (4 t) \cos (t), \sin (4 t) \sin (t)), I=[0,2 \pi]$
(f) $h(t)=((1+2 \cos (t)) \cos (t),(1+2 \cos (t)) \sin (t)), I=[0,2 \pi]$
4. Suppose $g: \mathbb{R} \rightarrow \mathbb{R}$ and we define $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$ by $f(t)=(t, g(t))$. Describe the curve parametrized by f.
5. For each of the following, compute $\lim _{n \rightarrow \infty} \mathbf{x}_{n}$.
(a) $\mathbf{x}_{n}=\left(\frac{n+1}{2 n+3}, 3-\frac{1}{n}\right)$
(b) $\mathbf{x}_{n}=\left(\sin \left(\frac{n-1}{n}\right), \cos \left(\frac{n-1}{n}\right), \frac{n-1}{n}\right)$
(c) $\mathbf{x}_{n}=\left(\frac{2 n-1}{n^{2}+1}, \frac{3 n+4}{n+1}, 4-\frac{6}{n^{2}}, \frac{6 n+1}{2 n^{2}+5}\right)$
6. Let $f: \mathbb{R} \rightarrow \mathbb{R}^{3}$ be defined by

$$
f(t)=\left(\frac{\sin (t)}{t}, \cos (t), 3 t^{2}\right)
$$

Evaluate the following.
(a) $\lim _{t \rightarrow \pi} f(t)$
(b) $\lim _{t \rightarrow 1} f(t)$
(c) $\lim _{t \rightarrow 0} f(t)$
7. Discuss the continuity of each of the following functions.
(a) $f(t)=\left(t^{2}+1, \cos (2 t), \sin (3 t)\right.$
(b) $g(t)=(\sqrt{t+1}, \tan (t))$
(c) $f(t)=\left(\frac{1}{t^{2}-1}, \sqrt{1-t^{2}}, \frac{1}{t}\right)$
(d) $g(t)=(\cos (4 t), 1-\sqrt{3 t+1}, \sin (5 t), \sec (t))$
8. Let $f: \mathbb{R} \rightarrow \mathbb{R}^{3}$ be defined by $f(t)=\left(t^{2}, 3 t, 2 t+1\right)$. Find

$$
\lim _{h \rightarrow 0} \frac{f(t+h)-f(t)}{h}
$$

