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Curves

Now that we have a basic understanding of the geometry of Rn, we are in a position
to start the study of calculus of more than one variable. We will break our study into
three pieces. In this chapter we will consider functions f : R → Rn, in Chapter 3 we will
study functions f : Rn → R, and finally in Chapter 4 we will consider the general case of
functions f : Rm → Rn.

Parametrizations of curves
We begin with some terminology and notation. Given a function f : R→ Rn, let

fk(t) = kth coordinate of f(t) (2.1.1)

for k = 1, 2, . . . , n. We call fk : R→ R the kth coordinate function of f . Note that fk has
the same domain as f and that, for any point t in the domain of f ,

f(t) = (f1(t), f2(t), . . . , fn(t)). (2.1.2)

If the domain of f is an interval I, then the range of f , that is, the set

C = {x : x = f(t) for some t in I}, (2.1.3)

is called a curve with parametrization f . The equation x = f(t), where x is in Rn, is a
vector equation for C and, writing x = (x1, x2, . . . , xn), the equations

x1 = f1(t),
x2 = f2(t),

...
...

xn = fn(t),

(2.1.4)

are parametric equations for C.

Example Consider f : R→ R2 defined by

f(t) = (cos(t), sin(t))

for 0 ≤ t ≤ 2π. Then for every value of t, f(t) is a point on the circle C of radius 1 with
center at (0, 0). Note that f(0) = (1, 0), f

(
π
2

)
= (0, 1), f(π) = (−1, 0), f

(
3π
2

)
= (0,−1),

1 Copyright c© by Dan Sloughter 2001



2 Curves Section 2.1

-1 -0.5 0.5 1

-1

-0.5

0.5

1

Figure 2.1.1 f(t) = (cos(t), sin(t))

and f(2π) = (1, 0) = f(0). In fact, as t goes from 0 to 2π, f(t) traverses C exactly once
in the counterclockwise direction. Thus f is a parametrization of the unit circle C. If we
denote a point in R2 by (x, y), then

x = cos(t),
y = sin(t),

are parametric equations for C. See Figure 2.1.1. The coordinate functions are

f1(t) = cos(t),
f2(t) = sin(t),

although we frequently write these as simply

x(t) = cos(t),
y(t) = sin(t).

Example Consider g : R→ R2 defined by

g(t) = (sin(2πt), cos(2πt))

for 0 ≤ t ≤ 2. Then g also parametrizes the unit circle C centered at the origin, the same
as f in the previous example. However, there is a difference: g(0) = (0, 1), g

(
1
4

)
= (1, 0),
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Figure 2.1.2 The ellipse x2

a2 + y2

b2 = 1

g
(

1
2

)
= (0,−1), g

(
3
4

)
= (−1, 0), and g(1) = (0, 1) = g(0), at which point g starts to repeat

its values. Hence g(t), starting at (0, 1), traverses C twice in the clockwise direction as t
goes from 0 to 2.

Example More generally, suppose a, b, and α are real numbers, with a > 0, b > 0, and
α 6= 0, and let

x(t) = a cos(αt),
y(t) = b sin(αt).

Then
(x(t))2

a2
+

(y(t))2

b2
= cos2(αt) + sin2(αt) = 1,

so (x(t), y(t)) is a point on the ellipse E with equation

x2

a2
+
y2

b2
= 1,

shown in Figure 2.1.2. Thus the function

f(t) = (a cos(αt), b cos(αt))

parametrizes the ellipse E, traversing the complete ellipse as t goes from 0 to
∣∣ 2π
α

∣∣.
Example Define f : R→ R2 by

f(t) = (t cos(t), t sin(t))

for −∞ < t < ∞. Then for negative values of t, f(t) spirals into the origin as t in-
creases, while for positive values of t, f(t) spirals away from the origin. Part of this curve
parametrized by f is shown in Figure 2.1.3.
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Figure 2.1.3 The spiral f(t) = (t cos(t), t sin(t)) for −4π ≤ t ≤ 4π

Example Define f : R→ R2 by

f(t) = (3− 4t, 2 + 3t)

for −∞ < t <∞. Then
f(t) = t(−4, 3) + (3, 2),

so f is a parametrization of the line through the point (3, 2) in the direction of (−4, 3).

In general, a function f : R → Rn defined by f(t) = tv + p, where v 6= 0 and p are
vectors in Rn, parametrizes a line in Rn.

Example Suppose g : R→ R3 is defined by

g(t) = (4 cos(t), 4 sin(t), t)

for −∞ < t <∞. If we denote the coordinate functions by

x(t) = 4 cos(t),
y(t) = 4 sin(t),
z(t) = t,

then
(x(t))2 + (y(t))2 = 16 cos2(t) + 16 sin2(t) = 16.

Hence g(t) always lies on a cylinder of radius 1 centered about the z-axis. As t increases,
g(t) rises steadily as it winds around this cylinder, completing one trip around the cylinder
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Figure 2.1.4 The helix f(t) = (4 cos(t), 4 sin(t), t), −2π ≤ t ≤ 2π

over every interval of length 2π. In other words, g parametrizes a helix, part of which is
shown in Figure 2.1.4.

Limits in Rn

As was the case in one-variable calculus, limits are fundamental for understanding ideas
such as continuity and differentiability. We begin with the definition of the limit of a
sequence of points in Rm.

Definition Let {xn} be a sequence of points in Rm. We say that the limit of {xn} as n
approaches infinity is a, written lim

n→∞
xn = a, if for every ε > 0 there is a positive integer

N such that
‖xn − a‖ < ε (2.1.5)

whenever n > N .

Notice that this definition involves only a slight modification of the definition for the
limit of a sequence of real numbers, namely, the use of the norm of a vector instead of the
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Figure 2.1.5 Points
(
1− 1

n ,
2
n

)
approaching (1, 0)

absolute value of a real number in (2.1.5). In words, lim
n→∞

xn = a if, given any ε > 0 , we
can always find a point in the sequence beyond which all terms of the sequence lie within
Bn(a, ε), the open ball of radius ε centered at a.

Example Suppose

xn =
(

1− 1
n
,

2
n

)
for n = 1, 2, 3, . . .. Since

lim
n→∞

(
1− 1

n

)
= 1

and
lim
n→∞

2
n

= 0,

we should have
lim
n→∞

xn = (1, 0).

To verify this, we first note that

‖xn − (1, 0)‖ =
∥∥∥∥(− 1

n
,

2
n

)∥∥∥∥ =

√
1
n2

+
4
n2

=
√

5
n
.

Hence ‖xn− (1, 0)‖ < ε whenever n >
√

5
ε . That is, if we let N be any integer greater than

or equal to
√

5
ε , then ‖xn − (1, 0)‖ < ε whenever n > N , verifying that

lim
n→∞

xn = (1, 0).

See Figure 2.1.5.

Put another way, the definition of the limit of a sequence in Rm says that a sequence
{xn} in Rm converges to a in Rm if and only if the sequence of real numbers {‖xn − a‖}
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converges to 0. That is, lim
n→∞

xn = a if and only if lim
n→∞

‖xn − a‖ = 0. Moreover, if we let

xn = (xn1, xn2, . . . , xnm) and a = (a1, a2, . . . , am), then

‖xn − a‖ =
√

(xn1 − a1)2 + (xn2 − a2)2 + · · ·+ (xnm − am)2, (2.1.6)

so lim
n→∞

‖xn − a‖ = 0 if and only if

lim
n→∞

√
(xn1 − a1)2 + (xn2 − a2)2 + · · ·+ (xnm − am)2 = 0. (2.1.7)

But (2.1.7) can occur only when lim
n→∞

(xnk−ak)2 = 0 for k = 1, 2, . . . ,m. Hence lim
n→∞

xn =
a if and only if lim

n→∞
xnk = ak for k = 1, 2, . . . ,m.

Proposition Suppose {xn} is a sequence in Rm, xn = (xn1, xn2, . . . , xnm), and a =
(a1, a2, . . . , am). Then lim

n→∞
xn = a if and only if lim

n→∞
xnk = ak for k = 1, 2, . . . ,m.

This proposition tells us that to compute the limit of a sequence in Rm, we need only
compute the limit of each coordinate separately, thus reducing the problem of computing
limits in Rm to the problem of finding limits of sequences of real numbers.

Example If

xn =
(

2− n
n2

, sin
(

1
n

)
, cos

(
3
n

))
,

n = 1, 2, 3, . . ., then

lim
n→∞

xn =
(

lim
n→∞

2− n
n2

, lim
n→∞

sin
(

1
n

)
, lim
n→∞

cos
(

3
n

))
= (0, 0, 1).

We may now define the limit of a function f : R→ Rm at a real number c. Notice that
the definition is identical to the definition of a limit for a real-valued function f : R→ R.

Definition Let c be a real number, let I be an open interval containing c, and let
J = {t : t is in I, t 6= c}. Suppose f : R → Rm is defined for all t in J . Then we say that
the limit of f(t) as t approaches c is a, denoted lim

t→c
f(t) = a, if for every sequence of real

numbers {tn} in J ,
lim
n→∞

f(tn) = a (2.1.8)

whenever lim
n→∞

tn = c.

As in one-variable calculus, we may define the limit of f(t) as t approaches c from the
right, denoted

lim
t→c+

f(t),

by restricting to sequences {tn} with tn > c for n = 1, 2, 3, . . ., and the limit of f(t) as t
approaches c from the left, denoted

lim
t→c−

f(t),
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by restricting to sequences {tn} with tn < c for n = 1, 2, 3, . . .. Moreover, the following
useful proposition follows immediately from our definition and the previous proposition.

Proposition Suppose f : R→ Rm with

f(t) = (f1(t), f2(t), . . . , fm(t)).

The for any real number c,

lim
t→c

f(t) = (lim
t→c

f1(t), lim
t→c

f2(t), . . . , lim
t→c

fm(t)). (2.1.9)

Hence the problem of computing limits for functions f : R → Rm reduces to the
problem of computing limits of the coordinate functions fk : R → R, k = 1, 2, . . . ,m, a
familiar problem from one-variable calculus. The analogous statements for limits from the
right and left also hold.

Example If f(t) = (t2 − 1, sin(t), cos(t)) is a function from R to R3, then, for example,

lim
t→π

f(t) =
(

lim
t→π

(t2 − 1), lim
t→π

sin(t), lim
t→π

cos(t)
)

= (π2 − 1, 0,−1).

Definitions for continuity also follow the pattern of the related definitions in one-
variable calculus.

Definition Suppose f : R→ Rm. We say f is continuous at a point c if

lim
t→c

f(t) = f(c). (2.1.10)

We say f is continuous from the right at c if

lim
t→c+

f(t) = f(c) (2.1.11)

and continuous from the left at c if

lim
t→c−

f(t) = f(c). (2.1.12)

We say f is continuous on an open interval (a, b) if f is continuous at every point c in
(a, b) and we say f is continuous on a closed interval [a, b] if f is continuous on the open
interval (a, b), continuous from the right at a, and continuous from the left at b.

If f(t) = (f1(t), f2(t), . . . , fm(t)), then f is continuous at a point c if and only if

lim
t→c

f(t) = (lim
t→c

f1(t), lim
t→c

f2(t), . . . , lim
t→c

fm(t) = f(c) = (f1(c), f2(c), . . . , fm(c)),

which is true if and only if lim
t→c

fk(t) = fk(c) for k = 1, 2, . . . ,m. In other words, we have
the following useful proposition.
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Proposition A function f : R → Rm with f(t) = (f1(t), f2(t), . . . , fm(t)) is continuous
at a point c if and only if the coordinate functions f1, f2, . . . , fm are each continuous at c.

Similar statements hold for continuity from the right and from the left.

Example The function f : R→ R3 defined by

f(t) = (sin(t2), t3 + 4, cos(t))

is continuous on the interval (−∞,∞) since each of its coordinate functions is continuous
on (−∞,∞).

Problems

1. Plot the curves parametrized by the following functions over the specified intervals I.
(a) f(t) = (3t+ 1, 2t− 1), I = [−5, 5]
(b) g(t) = (t, t2), I = [−3, 3]
(c) f(t) = (3 cos(t), 3 sin(t)), I = [0, 2π]
(d) h(t) = (3 cos(t), 3 sin(t)), I = [0, π]
(e) f(t) = (4 cos(2t), 2 sin(2t), I = [0, π]
(f) g(t) = (−4 cos(t), 2 sin(t)), I = [0, π]
(g) h(t) = (t sin(3t), t cos(3t)), I = [−π, π]

2. Plot the curves parametrized by the following functions over the specified intervals I.
(a) f(t) = (t+ 1, 2t− 1, 3t), I = [−4, 4]
(b) g(t) = (cos(t), t, sin(t)), I = [0, 4π]
(c) f(t) = (t cos(2t), t sin(2t), t), I = [−10, 10]
(d) h(t) = (cos(2t), sin(2t),

√
t), I = [0, 9]

3. Plot the curves parametrized by the following functions over the specified intervals I.
(a) f(t) = (cos(4πt), sin(5πt)), I = [−0.5, 0.5]
(b) f(t) = (cos(6πt), sin(7πt)), I = [−0.5, 0.5]
(c) h(t) = (cos3(t), sin3(t)), I = [0, 2π]
(d) g(t) = (cos(2πt), sin(2πt), sin(4πt)), I = [0, 1]
(e) f(t) = (sin(4t) cos(t), sin(4t) sin(t)), I = [0, 2π]
(f) h(t) = ((1 + 2 cos(t)) cos(t), (1 + 2 cos(t)) sin(t)), I = [0, 2π]

4. Suppose g : R → R and we define f : R → R2 by f(t) = (t, g(t)). Describe the curve
parametrized by f .

5. For each of the following, compute lim
n→∞

xn.

(a) xn =
(
n+ 1
2n+ 3

, 3− 1
n

)
(b) xn =

(
sin
(
n− 1
n

)
, cos

(
n− 1
n

)
,
n− 1
n

)
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(c) xn =
(

2n− 1
n2 + 1

,
3n+ 4
n+ 1

, 4− 6
n2
,

6n+ 1
2n2 + 5

)
6. Let f : R→ R3 be defined by

f(t) =
(

sin(t)
t

, cos(t), 3t2
)
.

Evaluate the following.
(a) lim

t→π
f(t) (b) lim

t→1
f(t)

(c) lim
t→0

f(t)

7. Discuss the continuity of each of the following functions.
(a) f(t) = (t2 + 1, cos(2t), sin(3t) (b) g(t) = (

√
t+ 1, tan(t))

(c) f(t) =
(

1
t2 − 1

,
√

1− t2, 1
t

)
(d) g(t) = (cos(4t), 1−

√
3t+ 1, sin(5t), sec(t))

8. Let f : R→ R3 be defined by f(t) = (t2, 3t, 2t+ 1). Find

lim
h→0

f(t+ h)− f(t)
h

.


