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Operations with Matrices

In the previous section we saw the important connection between linear functions and
matrices. In this section we will discuss various operations on matrices which we will find
useful in our later work with linear functions.

The algebra of matrices
If M is an n × m matrix with aij in the ith row and jth column, i = 1, 2, . . . , n, j =
1, 2, . . . ,m, then we will write M = [aij ]. With this notation the definitions of addition,
subtraction, and scalar multiplication for matrices are straightforward.

Definition Suppose M = [aij ] and N = [bij ] are n×m matrices and c is a real number.
Then we define

M +N = [aij + bij ], (1.6.1)

M −N = [aij − bij ], (1.6.2)

and
cM = [caij ]. (1.6.3)

In other words, we define addition, subtraction, and scalar multiplication for matrices
by performing these operations on the individual elements of the matrices, in a manner
similar to the way we perform these operations on vectors.

Example If

M =
[

1 2 3
−5 3 −1

]
and

N =
[

3 1 4
1 −3 2

]
,

then, for example,

M +N =
[

1 + 3 2 + 1 3 + 4
−5 + 1 3− 3 −1 + 2

]
=
[

4 3 7
−4 0 1

]
,

M −N =
[

1− 3 2− 1 3− 4
−5− 1 3 + 3 −1− 2

]
=
[
−2 1 −1
−6 6 −3

]
,

and

3M =
[

3 6 9
−15 9 −2

]
.
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These operations have natural interpretations in terms of linear functions. Suppose
L : Rm → R

n and K : Rm → R
n are linear with L(x) = Mx and K(x) = Nx for n ×m

matrices M and N . If we define L+K : Rn → R
m by

(L+K)(x) = L(x) +K(x), (1.6.4)

then
(L+K)(ej) = L(ej) +K(ej) (1.6.5)

for j = 1, 2, . . . ,m. Hence the jth column of the matrix which represents L+K is the sum
of the jth columns of M and N . In other words,

(L+K)(x) = (M +N)x (1.6.6)

for all x in Rm. Similarly, if we define L−K : Rm → R
n by

(L−K)(x) = L(x)−K(x), (1.6.7)

then
(L−K)(x) = (M −N)x. (1.6.8)

If, for any scalar c, we define cL : Rm → R
n by

cL(x) = c(L(x)), (1.6.9)

then
cL(ej) = c(L(ej)) (1.6.10)

for j = 1, 2, . . . ,m. Hence the jth column of the matrix which represents cL is the scalar
c times the jth column of M . That is,

cL(x) = (cM)x (1.6.11)

for all x in Rm. In short, the operations of addition, subtraction, and scalar multiplication
for matrices corresponds in a natural way with the operations of addition, subtraction,
and scalar multiplication for linear functions.

Now consider the case where L : Rm → R
p and K : Rp → R

n are linear functions. Let
M be the p × m matrix such that L(x) = Mx for all x in Rm and let N be the n × p
matrix such that K(x) = Nx for all x in Rp. Since for any x in Rm, L(x) is in Rp, we can
form K ◦ L : Rm → R

n, the composition of K with L, defined by

K ◦ L(x) = K(L(x)). (1.6.12)

Now
K(L(x)) = N(Mx), (1.6.13)
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so it would be natural to define NM , the product of the matrices N and M , to be the
matrix of K ◦ L, in which case we would have

N(Mx) = (NM)x. (1.6.14)

Thus we want the jth column of NM , j = 1, 2, . . . ,m, to be

K ◦ L(ej) = N(L(ej)), (1.6.15)

which is just the dot product of L(ej) with the rows of N . But L(ej) is the jth column of
M , so the jth column of NM is formed by taking the dot product of the jth column of M
with the rows of N . In other words, the entry in the ith row and jth column of NM is the
dot product of the ith row of N with the jth column of M . We write this out explicitly
in the following definition.

Definition If N = [aij ] is an n × p matrix and M = [bij ] is a p ×m matrix, then we
define the product of N and M to be the n×m matrix NM = [cij ], where

cij =
p∑
k=1

aikbkj , (1.6.16)

i = 1, 2, . . . , n and j = 1, 2, . . . ,m.

Note that NM is an n ×m matrix since K ◦ L : Rm → R
n. Moreover, the product

NM of two matrices N and M is defined only when the number of columns of N is equal
to the number of rows of M .

Example If

N =

 1 2
−1 3

2 −2


and

M =
[

2 −2 1 3
1 2 −1 −2

]
,

then

NM =

 1 2
−1 3

2 −2

[ 2 −2 1 3
1 2 −1 −2

]

=

 2 + 2 −2 + 4 1− 2 3− 4
−2 + 3 2 + 6 −1− 3 −3− 6

4− 2 −4− 4 2 + 2 6 + 4


=

 4 2 −1 −1
1 8 −4 −9
2 −8 4 10

 .
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Note that N is 3 × 2, M is 2 × 4, and NM is 3 × 4. Also, note that it is not possible to
form the product in the other order.

Example Let L : R2 → R
3 be the linear function defined by

L(x, y) = (3x− 2y, x+ y, 4y)

and let K : R3 → R
2 be the linear function defined by

K(x, y, z) = (2x− y + z, x− y − z).

Then the matrix for L is

M =

 3 −2
1 1
0 4

 ,
the matrix for K is

N =
[

2 −1 1
1 −1 −1

]
,

and the matrix for K ◦ L : R2 → R
2 is

NM =
[

2 −1 1
1 −1 −1

] 3 −2
1 1
0 4

 =
[

6− 1 + 0 −4− 1 + 4
3− 1 + 0 −2− 1− 4

]
=
[

5 −1
2 −7

]
.

In other words,

K ◦ L(x, y) =
[

5 −1
2 −7

] [
x
y

]
=
[

5x− y
2x− 7y

]
.

Note that it in this case it is possible to form the composition in the other order. The
matrix for L ◦K : R3 → R

3 is

MN =

 3 −2
1 1
0 4

[ 2 −1 1
1 −1 −1

]
=

 6− 2 −3 + 2 3 + 2
2 + 1 −1− 1 1− 1
0 + 4 0− 4 0− 4

 =

 4 −1 5
3 −2 0
4 −4 −4

 ,
and so

L ◦K(x, y, z) =

 4 −1 5
3 −2 0
4 −4 −4

xy
z

 =

 4x− y + 5z
3x− 2y

4x− 4y − 4z

 .
In particular, note that not only is NM 6= MN , but in fact NM and MN are not even
the same size.

Determinants
The notion of the determinant of a matrix is closely related to the idea of area and volume.
To begin our definition, consider the 2× 2 matrix

M =
[
a1 a2

b1 b2

]
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Figure 1.6.1 A parallelogram in R2 with adjacent sides a and b

and let a = (a1, a2) and b = (b1, b2). If P is the parallelogram which has a and b for
adjacent sides and A is the area of P (see Figure 1.6.1), then we saw in Section 1.3 that

A = ‖(a1, a2, 0)× (b1, b2, 0)‖ = ‖(0, 0, a1b2 − a2b1‖ = |a1b2 − a2b1|. (1.6.17)

This motivates the following definition.

Definition Given a 2× 2 matrix

M =
[
a1 a2

b1 b2

]
,

the determinant of M , denoted det(M), is

det(M) = a1b2 − a2b1. (1.6.18)

Hence we have A = |det(M)|. In words, for a 2 × 2 matrix M , the absolute value of
the determinant of M equals the area of the parallelogram which has the rows of M for
adjacent sides.

Example We have

det
[

1 3
−4 5

]
= (1)(5)− (3)(−4) = 5 + 12 = 17.

Now consider a 3× 3 matrix

M =

 a1 a2 a3

b1 b2 b3
c1 c2 c3
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and let a = (a1, a2, a3), b = (b1, b2, b3), and c = (c1, c2, c3). If V is the volume of the
parallelepiped P with adjacent edges a, b, and c, then, again from Section 1.3,

V = |a · (b× c)|
= |a1(b2c3 − b3c2) + a2(b3c1 − b1c3) + a3(b1c2 − b2c1)|

=
∣∣∣∣a1 det

[
b2 b3
c2 c3

]
− a2 det

[
b1 b3
c1 c3

]
+ a3 det

[
b1 b2
c1 c2

]∣∣∣∣ .
(1.6.19)

Definition Given a 3× 3 matrix

M =

 a1 a2 a3

b1 b2 b3
c1 c2 c3

 ,
the determinant of M , denoted det(M), is

det(M) = a1 det
[
b2 b3
c2 c3

]
− a2 det

[
b1 b3
c1 c3

]
+ a3 det

[
b1 b2
c1 c2

]
. (1.6.20)

Similar to the 2× 2 case, we have V = |det(M)|.

Example We have

det

 2 3 9
2 1 −4
5 1 −1

 = 2 det
[

1 −4
1 −1

]
− 3 det

[
2 −4
5 −1

]
+ 9 det

[
2 1
5 1

]
= 2(−1 + 4)− 3(−2 + 20) + 9(2− 5)
= 6− 54− 27
= −75.

Given an n× n matrix M = [aij ], let Mij be the (n− 1)× (n− 1) matrix obtained by
deleting the ith row and jth column of M . If for n = 1 we first define det(M) = a11 (that
is, the determinant of a 1 × 1 matrix is just the value of its single entry), then we could
express, for n = 2, the definition of a the determinant of a 2 × 2 matrix given in (1.6.18)
in the form

det(M) = a11 det(M11)− a12 det(M12) = a11a22 − a12a21. (1.6.21)

Similarly, with n = 3, we could express the definition of the determinant of M given in
(1.6.20) in the form

det(M) = a11 det(M11)− a12 det(M12) + a13 det(M13). (1.6.22)

Following this pattern, we may form a recursive definition for the determinant of an n×n
matrix.
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Definition SupposeM = [aij ] is an n×nmatrix and letMij be the (n−1)×(n−1) matrix
obtained by deleting the ith row and jth column of M , i = 1, 2, . . . , n and j = 1, 2, . . . , n.
For n = 1, we define the determinant of M , denoted det(M), by

det(M) = a11. (1.6.23)

For n > 1, we define the determinant of M , denoted det(M), by

det(M) = a11 det(M11)− a12 det(M12) + · · ·+ (−1)1+na1n det(M1n)

=
n∑
j=1

(−1)1+ja1j det(M1j).
(1.6.24)

We call the definition recursive because we have defined the determinant of an n × n
matrix in terms of the determinants of (n−1)× (n−1) matrices, which in turn are defined
in terms of the determinants of (n−2)× (n−2) matrices, and so on, until we have reduced
the problem to computing the determinants of 1× 1 matrices.

Example For an example of the determinant of a 4× 4 matrix, we have

det


2 1 3 2
2 1 4 1
−2 3 −1 2

1 2 1 1

 = 2 det

 1 4 1
3 −1 2
2 1 1

− det

 2 4 1
−2 −1 2

1 11 1



+ 3 det

 2 1 1
−2 3 2

1 2 1

− 2 det

 2 1 4
−2 3 −1

1 2 1


= 2((−1− 2)− 4(3− 4) + (3 + 2))− (2(−1− 2)
− 4(−2− 2) + (−2 + 1)) + 3(2(3− 4)− (−2− 2)
+ (−4− 3))− 2(2(3 + 2)− (−2 + 1) + 4(−4− 3))

= 2(−3 + 4 + 5)− (−6 + 16− 1) + 3(−2 + 4− 7)
− 2(10 + 1− 28)

= 12− 9− 15 + 34
= 22.

The next theorem states that there is nothing special about using the first row of the
matrix in the expansion of the determinant specified in (1.6.24), nor is there anything
special about expanding along a row instead of a column. The practical effect is that we
may compute the determinant of a given matrix expanding along whichever row or column
is most convenient. The proof of this theorem would take us too far afield at this point,
so we will omit it (but you will be asked to verify the theorem for the special cases n = 2
and n = 3 in Problem 10).
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Theorem Let M = [aij ] be an n×n matrix and let Mij be the (n− 1)× (n− 1) matrix
obtained by deleting the ith row and jth column of M . Then for any i = 1, 2, . . . , n,

det(M) =
n∑
j=1

(−1)i+jaij det(Mij), (1.6.25)

and for any j = 1, 2, . . . , n,

det(M) =
n∑
i=1

(−1)i+jaij det(Mij), (1.6.26)

Example The simplest way to compute the determinant of the matrix

M =

 4 0 3
2 3 1
−3 0 −2


is to expand along the second column. Namely,

det(M) = (−1)1+2(0) det
[

2 1
−3 −2

]
+ (−1)2+2(3) det

[
4 3
−3 −2

]
+ (−1)3+2(0) det

[
4 3
2 1

]
= 3(−8 + 9)
= 3.

You should verify that expanding along the first row, as we did in the definition of the
determinant, gives the same result.

In order to return to the problem of computing volumes, we need to define a paral-
lelepiped in Rn. First note that if P is a parallelogram in R2 with adjacent sides given by
the vectors a and b, then

P = {y : y = ta + sb, 0 ≤ t ≤ 1, 0 ≤ s ≤ 1}. (1.6.27)

That is, for 0 ≤ t ≤ 1, ta is a point between 0 and a, and for 0 ≤ s ≤ 1, sb is a point
between 0 and b; hence ta + sb is a point in the parallelogram P . Moreover, every point
in P may be expressed in this form. See Figure 1.6.2. The following definition generalizes
this characterization of parallelograms.

Definition Let a1,a2, . . . ,an be linearly independent vectors in Rn. We call

P = {y : y = t1a1 + t2a2 + · · ·+ tnan, 0 ≤ ti ≤ 1, i = 1, 2, . . . , n} (1.6.28)

an n-dimensional parallelepiped with adjacent edges a1,a2, . . . ,an.
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Figure 1.6.2 A parallelogram in R2 with adjacent sides a and b

Definition Let P be an n-dimensional parallelepiped with adjacent edges a1,a2, . . . ,an
and let M be the n × n matrix which has a1,a2, . . . ,an for its rows. Then the volume of
P is defined to be |det(M)|.

It may be shown, using (1.6.26) and induction, that if N is the matrix obtained by
interchanging the rows and columns of an n × n matrix M , then det(N) = det(M) (see
Problem 12). Thus we could have defined M in the previous definition using a1,a2, . . . ,an
for columns rather than rows.

Now suppose L : Rn → R
n is linear and let M be the n× n matrix such that L(x) =

Mx for all x in R
n. Let C be the n-dimensional parallelepiped with adjacent edges

e1, e2, . . . , en, the standard basis vectors for Rn. Then C is a 1 × 1 square when n = 2
and a 1× 1× 1 cube when n = 3. In general, we may think of C as an n-dimensional unit
cube. Note that the volume of C is, by definition,

det


1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

 = 1.

Suppose L(e1), L(e2), . . . , L(en) are linearly independent and let P be the n-dimensional
parallelepiped with adjacent edges L(e1), L(e2), . . . , L(en). Note that if

x = t1e1 + t2e2 + · · ·+ tnen,

where 0 ≤ tk ≤ 1 for k = 1, 2, . . . , n, is a point in C, then

L(x) = t1L(e1) + t2L(e2) + · · ·+ tnL(en)
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is a point in P . In fact, L maps the n-dimensional unit cube C exactly onto the n-
dimensional parallelepiped P . Since L(e1), L(e2), . . . , L(en) are the columns of M , it
follows that the volume of P equals |det(M)|. In other words, |det(M)| measures how
much L stretches or shrinks the volume of a unit cube.

Theorem Suppose L : Rn → R
n is linear and M is the n × n matrix such that

L(x) = Mx. If L(e1), L(e2), . . . , L(en) are linear independent and P is the n-dimensional
parallelepiped with adjacent edges L(e1), L(e2), . . . , L(en), then the volume of P is equal
to |det(M)|.

Problems

1. Let M =

 2 3
−2 1

4 −1

 and N =

 3 −2
1 0
2 −5

. Evaluate the following.

(a) 3M (b) M −N
(c) 2M +N (d) 2N − 6M

2. Evaluate the following matrix products.

(a)
[

3 2
−1 1

] [
2
3

]
(b)

[
2 −3
1 4

] [
1 4
2 −2

]

(c)
[

2 1 3
−3 2 1

] 3 4 −1
0 2 4
2 1 −2

 (d) [ 1 2 3 −1 ]


2 1
3 1
−2 4

0 −4


3. Suppose L : R3 → R

3 and K : R3 → R
3 are defined by

L(x, y, z) = (2x+ 3y, y − x+ 2z, x+ 2y − z)

and
K(x, y, z) = (2x+ 4y − 3z, x+ y + z, 3x− y + 4z).

Find the matrices for the following linear functions.
(a) 3L (b) L+K

(c) 2L−K (d) K + 2L
(e) K ◦ L (f) L ◦K

4. Let Rθ : R2 → R
2 be the linear function which rotates a vector in R2 counterclockwise

through an angle θ. In Section 1.5 we saw that

Rθ(x, y) =
[

cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
x
y

]
.

Show that the matrix for Rθ ◦Rα is the same as the matrix for Rθ+α. In other words,
show that Rθ ◦Rα = Rθ+α.
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5. Compute the determinants of the following matrices.

(a)
[

2 3
1 4

]
(b)

[
−3 −2

1 2

]

(c)

 2 3 1
1 2 9
5 −3 −1

 (d)

−1 2 −1
3 1 0
5 −4 0



(e)


1 2 −1 3
4 3 −2 1
1 4 −4 3
1 3 3 1

 (f)


1 2 −2 3 1
0 2 0 2 0
−3 2 0 1 5

1 5 −2 1 0
6 −5 0 2 −4


6. Find the area of the parallelogram in R2 with vertices at (1,−2), (3,−1), (4, 1), and

(2, 0).

7. Find the volume of the parallelepiped in R3 with bottom vertices at (1, 1, 1), (2, 3, 2),
(−1, 4, 3), and (−2, 2, 2) and top vertices at (1, 0, 5), (2, 2, 6), (−1, 3, 7), and (−2, 1, 6).

8. Let P be the 4-dimensional parallelepiped with adjacent edges a1 = (2, 1, 2, 1), a2 =
(−2, 0, 1, 1), a3 = (1, 1, 3, 6), and a4 = (−3, 1, 5, 0). Find the volume of P .

9. Find 2× 2 matrices A and B for which AB 6= BA.

10. Verify that (1.6.25) and (1.6.26) hold for all 2× 2 and 3× 3 matrices.

11. An n × n matrix M = [aij ] is called a diagonal matrix if aij = 0 for all i 6= j. Show
that if M is a diagonal matrix, then det(M) = a11a22 · · · ann.

12. If M is an n ×m matrix, then the m × n matrix MT whose columns are the rows of
M is called the transpose of M . For example, if

M =

 1 2
3 4
5 6

 ,
then

MT =
[

1 3 5
2 4 6

]
.

(a) Show that for a 2× 2 matrix M , det(MT ) = det(M).
(b) Show that for a 3×3 matrix M , det(MT ) = det(M). (Hint: Using (1.6.26), expand

det(M) along the first row and det(MT ) along the first column.)
(c) Use induction to show that for any n × n matrix M , det(MT ) = det(M). (Hint:

Note that (MT )ij = (Mji)T .)

13. Let x = (x1, x2, x3) and y = (y1, y2, y3) be vectors in R3 and let e1, e2, and e3 be the
standard basis vectors for R3. Show that applying (1.6.20) to the array e1 e2 e3

x1 x2 x3

y1 y2 y3
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yields x× y. Discuss what is correct and what is incorrect about the statement

x× y = det

 e1 e2 e3

x1 x2 x3

y1 y2 y3

 .
14. Show that the set of all points x = (x, y, z) in R3 which satisfy the equation

det

x y z
1 2 −1
3 1 2

 = 0

is a plane passing through the points (0, 0, 0), (1, 2,−1), and (3, 1, 2).

15. Verify directly that if L : Rm → R
p and K : Rp → R

n are linear functions, then
K ◦ L : Rm → R

n is also a linear function.


