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Introduction to Rn

Calculus is the study of functional relationships and how related quantities change with
each other. In your first exposure to calculus, the primary focus of your attention was
on functions involving a single independent variable and a single dependent variable. For
such a function f , a single real number input x determines a unique single output value
f(x). However, many of the functions of importance both within mathematics itself as
well as in the application of mathematics to the rest of the world involve many variables
simultaneously. For example, frequently in physics the function which describes the force
acting on an object moving in space depends on three variables, the three coordinates
which describe the location of the object. If the force function also varies with time,
then the force depends on four variables. Moreover, the output of the force function will
itself involve three variables, the three coordinate components of the force. Hence the
force function is such that it takes three, or four, variables for input and outputs three
variables. Far more complicated functions are easy to imagine: the gross national product
of a country is a function of thousands of variables with a single variable as output, an
airline schedule is a function with thousands of inputs (cities, planes, and people to be
scheduled, as well as other variables like fuel costs and the schedules of competing airlines)
and perhaps hundreds of outputs (the particular routes flown, along with their times).
Although such functions may at first appear to be far more difficult to work with than
the functions of single variable calculus, we shall see that we will often be able to reduce
problems involving functions of several variables to related problems involving only single
variable functions, problems which we may then handle using already familiar techniques.

By definition, a function takes a single input value and associates it with a single
output value. Hence, even though in this book the inputs to our functions will often
involve several variables, as will the outputs, we will nevertheless want to regard the input
and output of a function as single points in some multidimensional space. This is natural
in the case of, for example, the force function described above, where the input is a point
in three dimensional space, four if we need to use time, but requires some mathematical
abstraction if we want to consider the input to the gross national product function as a
point in some space of many thousands of dimensions. Because even the geometry of two-
and three-dimensional space may be in some respects new to you, we will use this chapter
to study the geometry of multidimensional space before proceeding to the study of calculus
proper in Chapter 2.

Throughout the book we will let R denote the set of real numbers.

Definition By n-dimensional Euclidean space we mean the set

Rn = {(x1, x2, . . . , xn) : xi ∈ R, i = 1, 2, . . . , n}. (1.1.1)
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Figure 1.1.1 A point in R3

That is, Rn is the space of all ordered n-tuples of real numbers. We will denote a point in
this space by

x = (x1, x2, . . . , xn), (1.1.2)

and, for i = 1, 2, . . . , n, we call xi the ith coordinate of x.

Example When n = 2, we have

R2 = {(x1, x2) : x1, x2 ∈ R},

which is our familiar representation for points in the Cartesian plane. As usual, we will
in this case frequently label the coordinates as x and y, or something similar, instead of
numbering them as x1 and x2.

Example When n = 3, we have

R3 = {(x1, x2, x3) : x1, x2, x3 ∈ R}.

Just as we can think of R2 as a way of assigning coordinates to points in the Euclidean
plane, we can think of R3 as assigning coordinates to three-dimensional Euclidean space. To
picture this space, we must imagine three mutually perpendicular axes with the coordinates
marked off along the axes as in Figure 1.1.1. Again, we will frequently label the coordinates
of a point in R3 as, for example, x, y, and z, or u, v, and w, rather than using numbered
coordinates.

Example If an object moves through space, its location may be specified with four
coordinates, three spatial coordinate, say, x, y, and z, and one time coordinate, say t.
Thus its location is specified by a point p = (x, y, z, t) in R4. Of course, we cannot draw
a picture of such a point.

Before beginning our geometric study of Rn, we first need a few basic algebraic defini-
tions.



Section 1.1 Introduction to Rn 3

Definition Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be points in Rn and let a
be a real number. Then we define

x + y = (x1 + y1, x2 + y2, . . . , xn + yn), (1.1.3)

x− y = (x1 − y1, x2 − y2, . . . , xn − yn), (1.1.4)

and
ax = (ax1, ax2, . . . , axn). (1.1.5)

Example If x = (2,−3, 1) and y = (−4, 1,−2) are two points in R3, then

x + y = (−2,−2,−1),

x− y = (6,−4, 3),

y − x = (−6, 4,−3),

3x = (6,−9, 3),

and
−2y = (8,−2, 4).

Notice that we defined addition and subtraction for points in Rn, but we did not define
multiplication. In general there is no form of multiplication for such points that is useful
for our purpose. Of course, multiplication is defined in the special case n = 1 and for the
special case n = 2 if we consider the points in R2 as points in the complex plane. We
shall see in Section 1.3 that there is also an interesting and useful type of multiplication
in R3. Also note that (1.1.5) does provide a method for multiplying a point in Rn by a
a real number, the result being another point in Rn. In such cases we often refer to the
real number as a scalar and this multiplication as scalar multiplication. We shall provide
a geometric interpretation of this form of multiplication shortly.

Geometry of Rn

Recall that if x = (x1, x2) and y = (y1, y2) are two points in R2, then, using the
Pythagorean theorem, the distance from x to y is√

(y1 − x1)2 + (y2 − x2)2. (1.1.6)

This formula is easily generalized to R3: Suppose x = (x1, x2, x3) and y = (y1, y2, y3) are
two points in R3. Let z = (y1, y2, x3). Since the first two coordinates of y and z are the
same, y and z lie on the same vertical line, and so the distance between them is simply

|y3 − x3|. (1.1.7)

Moreover, x and z have the same third coordinate, and so lie in the same horizontal plane.
Hence the distance between x and z is the same as the distance between (x1, x2) and
(y1, y2) in R2, that is, √

(y1 − x1)2 + (y2 − x2)2. (1.1.8)
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Figure 1.1.2 Distance from x = (x1, x2, x3) and y = (y1, y2, y3)

Finally, the points x, y, and z form a right triangle with right angle at z. Hence, using
the Pythagorean theorem again, the distance from x to y is√(√

(y1 − x1)2 + (y2 − x2)2
)2

+ |y3 − x3|2 =
√

(y1 − x1)2 + (y2 − x2)2 + (y3 − x3)2.

In particular, if we let ‖x‖ denote the distance from x = (x1, x2, x3) to the origin (0, 0, 0)
in R3, then

‖x‖ =
√
x21 + x22 + x23. (1.1.9)

With this notation, the distance from x to y is

‖y − x‖ = ‖(y1 − x1, y2 − x2, y3 − x3)‖

=
√

(y1 − x1)2 + (y2 − x2)2 + (y3 − x3)2.
(1.1.10)

Example If x = (1, 2,−3) and y = (3,−2, 1), then the distance from x to the origin is

‖x‖ =
√

12 + 22 + (−3)2 =
√

14

and the distance from x to y is given by

‖y − x‖ = ‖(2,−4, 4)‖ =
√

4 + 16 + 16 = 6.

Although we do not have any physical analogies to work with when n > 3, nevertheless
we may generalize (1.1.9) in order to define distance in Rn.

Definition If x = (x1, x2, . . . , xn) is a point in Rn, we define the norm of x, denoted
‖x‖, by

‖x‖ =
√
x21 + x22 + · · ·+ x2n. (1.1.11)

For two points x and y in Rn, we define the distance between x and y, denoted d(x,y),
by

d(x,y) = ‖y − x‖. (1.1.12)
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We will let 0 = (0, 0, . . . , 0) denote the origin in Rn. Then we have

‖x‖ = d(x,0);

that is, the norm of x is the distance from x to the origin.

Example If x = (2, 3,−1, 5), a point in R4, then the distance from x to the origin is

‖x‖ =
√

4 + 9 + 1 + 25 =
√

39.

If y = (3, 2, 1, 4), then the distance from x to y is

d(x,y) = ‖y − x‖ = ‖(1,−1, 2,−1)‖ =
√

7.

Note that if x = (x1, x2, . . . , xn) is a point in Rn and a is a scalar, then

‖ax‖ = ‖(ax1, ax2, . . . , axn)‖

=
√
a2x21 + a2x22 + · · ·+ x2n

= |a|
√
x21 + x22 + · · ·+ x2n

= |a|‖x‖. (1.1.13)

That is, the norm of a scalar multiple of x is just the absolute value of the scalar times
the norm of x. In particular, if x 6= 0, then∥∥∥∥ 1

‖x‖
x

∥∥∥∥ =
1

‖x‖
‖x‖ = 1.

That is,
1

‖x‖
x

is a unit distance from the origin.

Definition Let p = (p1, p2, . . . , pn) be a point in Rn and let r > 0 be a real number.
The set of all points (x1, x2, . . . , xn) in Rn which satisfy the equation

(x1 − p1)2 + (x2 − p2)2 + · · ·+ (xn − pn)2 = r2 (1.1.14)

is called an (n − 1)-dimensional sphere with radius r and center p, which we denote
Sn−1(p, r). The set of all points (x1, x2, . . . , xn) in Rn which satisfy the inequality

(x1 − p1)2 + (x2 − p2)2 + · · ·+ (xn − pn)2 < r2 (1.1.15)

is called an open n-dimensional ball with radius r and center p, which we denote Bn(p, r).
The set of all points (x1, x2, . . . , xn) in Rn which satisfy the inequality

(x1 − p1)2 + (x2 − p2)2 + · · ·+ (xn − pn)2 ≤ r2 (1.1.16)

is called a closed n-dimensional ball with radius r and center p, which we denote B̄n(p, r).
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Figure 1.1.3 A closed ball in R2

A sphere Sn−1(p, r) is the set of all points which lie a fixed distance r from a fixed
point p in Rn. Note that for n = 1, S0(p, r) consists of only two points, namely, the point
p− r that lies a distance r to the left of p and the point p + r that lies a distance r to the
right of p; B1(p, r) is the open interval (p − r,p + r); and B̄1(p, r) is the closed interval
[p − r,p + r]. In this sense open and closed balls are natural analogs of open and closed
intervals on the real line. For n = 2, a sphere is a circle, an open ball is a disk without its
enclosing circle, and a closed ball is a disk along with its enclosing circle.

Vectors

Many of the quantities of interest in physics, such as velocities, accelerations, and forces,
involve both a magnitude and a direction. For example, we might speak of a force of
magnitude 10 newtons acting on an object at the origin in a plane at an angle of π

4 with
the horizontal. It is common to picture such a quantity as an arrow, with length given by
the magnitude and with the tip pointing in the specified direction, and to refer to it as a
vector. Now any point x = (x1, x2), x 6= 0, in R2 specifies a vector in the plane, namely
the vector starting at the origin and ending at x. The magnitude, or length, of such a
vector is ‖x‖ and its direction is specified by the angle α that it makes with the horizontal
axis or by the angle β that it makes with the vertical axis. Note that

cos(α) =
x1
‖x‖

and

cos(β) =
x2
‖x‖

and that, although neither cos(α) nor cos(β) uniquely determines the direction of the
vector by itself, together they completely determine the direction. See Figure 1.1.4.

In general, we may think of x = (x1, x2, . . . , xn) either as a point in Rn or as a vector
in Rn, starting at the origin with length ‖x‖. If x 6= 0, we say, in analogy with the case in



Section 1.1 Introduction to Rn 7

β
α

x

x

x = (    ,     )x1 x2

2

1

Figure 1.1.4 A vector viewed as an arrow from 0 = (0, 0) to x = (x1, x2)

R2, that the direction of x is the vector

u =

(
x1
‖x‖

,
x2
‖x‖

, . . . ,
xn
‖x‖

)
(1.1.17)

The coordinates of this vector u are called the direction cosines of x because we may think
of

uk =
xk
‖x‖

as the cosine of the angle between the vector x and the kth axis for k = 1, 2, . . . , n, an
interpretation that will become clearer after our discussion of angles in Rn in the next
section. Alternatively, we may think of u as a vector of unit length that points in the same
direction as x. Any vector of length 1, such as u, is called a unit vector. We call 0 the
zero-vector since it has length 0. Note that 0 does not have a direction.

Example The vector x = (1, 2,−2, 3) in R4 has length ‖x‖ =
√

18 and direction

u =

(
1√
18
,

2√
18
,− 2√

18
,

3√
18

)
=

1√
18

(1, 2,−2, 3).

It is now possible to give geometric meanings to our definitions of scalar multiplication,
vector addition, and vector subtraction. First note that if x 6= 0 and a > 0, then

‖ax‖ = a‖x‖,

so ax has direction
1

‖ax‖
ax =

1

‖x‖
x,

the same as x. Hence ax points in the same direction as x, but with length a times the
length of x. If a < 0, then

‖ax‖ = |a|‖x‖ = −a‖x‖,
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Figure 1.1.5 Examples of scalar multiplication of a vector in R2

so ax has direction
1

‖ax‖
ax = − 1

‖x‖
x.

Hence, in this case, ax has the opposite direction of x with length |a| times the length of
x. See Figure 1.1.5 for examples in R2.

Next consider two vectors x = (x1, x2) and y = (y1, y2) in R2 and their sum

z = x + y = (x1 + y1, x2 + y2).

Note that the tip of z is located x1 units horizontally and x2 units vertically from the tip
of y. Geometrically, the tip of z is located at the tip of x if x were first translated parallel
to itself so that its tail now coincided with the tip of y. Equivalently, we can view z as
the diagonal of the parallelogram which has x and y for its sides. See Figure 1.1.6 for an
example.

x

y

x + y

x

x

1

2

Figure 1.1.6 Example of vector addition in R2

Finally, consider two vectors x = (x1, x2) and y = (y1, y2) in R2 and their difference

z = x− y = (x1 − y1, x2 − y2).
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Figure 1.1.7 Example of vector subtraction in R2

Note that since the coordinates of z are just the differences in the coordinates of x and y,
z has the magnitude and direction of an arrow pointing from the tip of y to the tip of x, as
illustrated in Figure 1.1.7. In other words, we may picture z geometrically by translating
an arrow drawn from the tip of y to the tip of z parallel to itself until its tail is at the
origin.

In the previous discussion it is tempting to think of the arrow from the tip of y to the
tip of x as really being x−y, not just a parallel translate of x−y. In fact, it is convenient
and useful to think of parallel translates of a given vector, that is, vectors which have the
same direction and magnitude, but with their tails not at the origin, as all being the same
vector, just drawn in different places in space. We shall see many instances where viewing
vectors in this way significantly helps our understanding.

Before closing this section, we need to call attention to some special vectors.

Definition The vectors
e1 = (1, 0, 0, . . . , 0)

e2 = (0, 1, 0, . . . , 0)

...

en = (0, 0, 0, . . . , 1)

(1.1.18)

in Rn are called the standard basis vectors.

Example In R2 the standard basis vectors are e1 = (1, 0) and e2 = (0, 1). Note that if
x = (x, y) is any vector in R2, then

x = (x, 0) + (0, y) = x(1, 0) + y(0, 1) = xe1 + ye2.

For example, (2, 5) = 2e1 + 5e2.

Example In R3 the standard basis vectors are e1 = (1, 0, 0), e2 = (0, 1, 0), and e3 =
(0, 0, 1). Note that if x = (x, y, z) is any vector in R3, then

x = (x, 0, 0) + (0, y, 0) + (0, 0, z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1) = xe1 + ye2 + ze3.

For example, (1, 2,−4) = e1 + 2e2 − 4e3.



10 Introduction to Rn Section 1.1

The previous two examples are easily generalized to show that any vector in Rn may
be written as a sum of scalar multiples of the standard basis vectors. Specifically, if
x = (x1, x2, . . . , xn), then we may write x as

x = x1e1 + x2e2 + · · ·+ xnen. (1.1.19)

We say that x is a linear combination of the standard basis vectors e1, e2, . . . , en. It is also
important to note that there is only one choice for the scalars in this linear combination.
That is, for any vector x in Rn there is one and only one way to write x as a linear
combination of the standard basis vectors.

Notes on notation

In this text, we will denote vectors using a plain bold font. This is a common convention,
but not the only one used for denoting vectors. Another frequently used convention is to
place arrows above a variable which denotes a vector. For example, one might write ~x for
what we have been denoting x.

It is also worth noting that in many books the standard basis vectors in R2 are denoted
by i and j (or ~i and ~j ), and the standard basis vectors in R3 by i, j, and k (or ~i, ~j, and
~k ). Since this notation is not easy to extend to higher dimensions, we will not make much
use of it.

Problems

1. Let x = (1, 2), y = (2, 3), and z = (−2, 4). For each of the following, plot the points
x, y, z, and the indicated point w.

(a) w = x + y (b) w = 2x− y

(c) w = z− 2x (d) w = 3x + 2y − z

2. Let x = (1, 3,−1), y = (3, 2, 1), and z = (−2, 4,−2). Compute each of the following.

(a) x + y (b) x− z + 3y

(c) 3z− 2y (d) −3x + 4z

3. Let x = (1,−1, 2, 3), y = (−2, 3, 1,−2), and z = (2, 1, 3,−4). Compute each of the
following.

(a) x− 2z (b) y + x− 3z

(c) −3y − x + 4z (d) x + 3z− 4y

4. Let x = (1, 2) and y = (−2, 3). Compute each of the following.

(a) ‖x‖ (b) ‖x− y‖
(c) ‖3x‖ (d) ‖ − 4y‖

5. Let x = (2, 3,−1), y = (2,−1, 5), and z = (3,−1,−2). Compute each of the following.

(a) ‖x‖ (b) ‖x + 2y‖
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(c) ‖ − 5x‖ (d) ‖x + y + z‖

6. Find the distances between the following pairs of points.

(a) x = (3, 2), y = (−1, 3) (b) x = (1, 2, 1), y = (−2,−1, 3)

(c) x = (4, 2, 1,−1), y = (1, 3, 2,−2) (d) z = (3,−3, 0), y = (−1, 2,−5)
(e) w = (1, 2, 4,−2, 3,−1), u = (3, 2, 1,−3, 2, 1)

7. Draw a picture of the following sets of points in R2.

(a) S1((1, 2), 1) (b) B2((1, 2), 1) (c) B̄2((1, 2), 1)

8. Draw a picture of the following sets of points in R.

(a) S0(1, 3) (b) B1(1, 3) (c) B̄1(1, 3)

9. Describe the differences between S2((1, 2, 1), 1), B3((1, 2, 1), 1), and B̄3((1, 2, 1), 1) in
R3.

10. Is the point (1, 4, 5) in the the open ball B3((−1, 2, 3), 4)?

11. Is the point (3, 2,−1, 4, 1) in the open ball B5((1, 2,−4, 2, 3), 3)?

12. Find the length and direction of the following vectors.

(a) x = (2, 1) (b) z = (1, 1,−1)

(c) x = (−1, 2, 3) (d) w = (1,−1, 2,−3)

13. Let x = (1, 3), y = (4, 1), and z = (2,−1). Plot x, y, and z. Also, show how to obtain
each of the following geometrically.

(a) w = x + y (b) w = y − x

(c) w = 3z (d) w = −2z

(e) w =
1

2
z (f) w = x + y + z

(g) w = x + 3z (h) w = x− 1

4
y

14. Suppose x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn), and z = (z1, z2, . . . , zn) are vectors
in Rn and a, b, and c are scalars. Verify the following.

(a) x + y = y + x (b) x + (y + z) = (x + y) + z

(c) a(x + y) = ax + ay (d) (a+ b)x = ax + bx

(e) a(bx) = (ab)x (f) x + 0 = x

(g) 1x = x (h) x + (−x) = 0, where −x = −1x

15. Let u = (1, 1) and v = (−1, 1) be vectors in R2.

(a) Let x = (2, 1). Find scalars a and b such that x = au + bv. Are a and b unique?

(b) Let x = (x, y) be an arbitrary vector in R2. Show that there exist unique scalars
a and b such that x = au + bv.
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(c) The result in (b) shows that u and v form a basis for R2 which is different from the
standard basis of e1 and e2. Show that the vectors u = (1, 1) and w = (−1,−1)
do not form a basis for R2. (Hint: Show that there do not exist scalars a and b
such that x = au + w when x = (2, 1).)


