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Testing multinomial parameters

I Suppose X1, X2, . . . , Xn is a random sample from a finite distribution
with k possible outcomes.

I For i = 1, 2, . . . , k, let

pi = probability of outcome i .

I Let p = (p1, p2, . . . , pk).

I Given some Π = (π1, π2, . . . , πk), where 0 ≤ πi ≤ 1 for i = 1, 2, . . . , k
and

∑k
i=1 πi = 1, suppose we wish to test

H0 : p = Π

HA : p 6= Π.
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Testing multinomial parameters (cont’d)

I If, for i = 1, 2, . . . , k, we let

Yi = number of outcomes of type i ,

then the likelihood function is

L(p1, p2, . . . , pk) = pY1
1 pY2

2 · · · pYk
k .

I We have seen previously that the maximum likelihood estimator for pi

is

p̂i =
Yi

n
,

so the generalized likelihood ratio is

Λ =
L(π1, π2, . . . , πk)

L(p̂1, p̂2, . . . , p̂k)
=

k∏
i=1

(
πi

p̂i

)Yi

.
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Testing multinomial parameters (cont’d)
I Hence

−2 log(Λ) = −2
k∑

i=1

Yi log

(
πi

p̂i

)

= 2
k∑

i=1

Yi log

(
p̂i

πi

)

= 2
k∑

i=1

Yi log

(
Yi

nπi

)
.

I Note: when H0 is true, nπi = E [Yi ], the expected number of
observations of outcome i .

I Hence we may remember the final expression for −2 log(Λ) as

2
∑

(Observed) log

(
Observed

Expected

)
,

where the sum extends over all possible outcomes.
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Testing multinomial parameters (cont’d)

I Now for large n, −2 log(Λ) is approximately χ2(k − 1) (k − 1, not k,
because there are only k − 1 parameters since

∑k
i=1 pi = 1).

I Since the generalized likelihood ratio test rejects H0 for small values
of Λ, we reject H0 for large values of −2 log(Λ), with, for an observed
value λ of Λ, p-value equal to P(U ≥ −2 log(λ)), where U is
χ2(k − 1).

I Note: A conservative rule of thumb is to assume the approximation to
the chi-square distribution is reasonable as long as nπi ≥ 5 for
i = 1, 2, . . . , k.
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Example

I In one of his genetic experiments, Gregor Mendel crossed 556
smooth-yellow male peas with wrinkled-green female peas. For each
of the 556 crossings, there are four possible outcomes: smooth-yellow,
smooth-green, wrinkled-yellow, and wrinkled-green.

I Let

p1 = probability of smooth-yellow,

p2 = probability of smooth-green,

p3 = probability of wrinkled-yellow,

p4 = probability of wrinkled-green.

I Mendel’s theory predicted that p1 = 9
16 , p2 = 3

16 , p3 = 3
16 , and

p4 = 1
16 .
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Example

I Hence we want to test

H0 : p =

(
9

16
,

3

16
,

3

16
,

1

16

)
HA : p 6=

(
9

16
,

3

16
,

3

16
,

1

16

)
.

I The following table contains Mendel’s data, along with the expected
frequency of each outcome under H0:

Type Observed Frequency Expected Frequency

Smooth-yellow 315 312.75
Smooth-green 108 104.25
Wrinkled-yellow 101 104.25
Wrinkled-green 32 34.75

Total 556 556.00
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Example

I We may now compute

−2 log(λ) = 2
4∑

i=1

yi log

(
yi

nπi

)
= 0.4754.

I If U is χ2(3), then the p-value for this test is
P(U ≥ 0.4754) = 0.9242617, giving us no evidence for rejecting the
null hypothesis.

I Indeed, these data provide such a good fit to Mendel’s data that it
has been suspected that his assistants manipulated the data to fit the
hypothesis.
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Pearson’s chi-square statistic

I Let
f (x) = x log

(x

a

)
.

I Then

f ′(x) = x · 1
x

a

· 1

a
+ log

(x

a

)
= 1 + log

(x

a

)
and

f ′′(x) =
1

x
.

I So f (a) = 0, f ′(a) = 1, and f ′′(a) = 1
a .

I Hence, for x close to a,

f (x) ≈ (x − a) +
1

2a
(x − a)2.
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Pearson’s chi-square statistic
I Thus, when H0 is true and n is large,

yi log

(
yi

nπi

)
≈ (yi − nπi ) +

1

2nπi
(yi − nπi )

2.

I It follows that

−2 log(Λ) = 2
k∑

i=1

Yi log

(
Yi

nπi

)

≈ 2
k∑

i=1

(Yi − nπi ) +
k∑

i=1

(Yi − nπi )
2

nπi

= 2(n − n) +
k∑

i=1

(Yi − nπi )
2

nπi

=
k∑

i=1

(Yi − nπi )
2

nπi
.
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Pearson’s chi-square statistic

I We call

Q =
k∑

i=1

(Yi − nπi )
2

nπi

Pearson’s chi-square statistic.

I We may remember this formula as∑ (Observed− Expected)2

Expected
,

where the sum extends over all possible outcomes.

I We may use either −2 log(Λ) or Q to perform the chi-square
goodness of fit test.
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Example

I For Mendel’s data, we have

q =
4∑

i=1

(yi − nπi )
2

nπi
= 0.4700,

differing only slightly from the value of −2 log(λ) computed above.

I Note: If the observed frequencies are in the vector x and the
hypothesized probabilities are in the vector pi, then the R command

> chisq.test(x,p=pi)

performs the goodness of fit test using Pearson’s chi-square statistic.
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