The Two-Sample t-Test
 Mathematics 47: Lecture 30

Dan Sloughter

Furman University

May 4, 2006

The two-sample t-test

- Suppose $X_{1}, X_{2}, \ldots, X_{n}$ and $Y_{1}, Y_{2}, \ldots, Y_{m}$ are independent random samples from $N\left(\mu_{X}, \sigma^{2}\right)$ and $N\left(\mu_{Y}, \sigma^{2}\right)$, respectively.

The two-sample t-test

- Suppose $X_{1}, X_{2}, \ldots, X_{n}$ and $Y_{1}, Y_{2}, \ldots, Y_{m}$ are independent random samples from $N\left(\mu_{X}, \sigma^{2}\right)$ and $N\left(\mu_{Y}, \sigma^{2}\right)$, respectively.
- Suppose we wish to test the hypotheses

$$
\begin{aligned}
& H_{0}: \mu_{X}=\mu_{Y} \\
& H_{A}: \mu_{X}>\mu_{Y}
\end{aligned}
$$

The two-sample t-test

- Suppose $X_{1}, X_{2}, \ldots, X_{n}$ and $Y_{1}, Y_{2}, \ldots, Y_{m}$ are independent random samples from $N\left(\mu_{X}, \sigma^{2}\right)$ and $N\left(\mu_{Y}, \sigma^{2}\right)$, respectively.
- Suppose we wish to test the hypotheses

$$
\begin{aligned}
& H_{0}: \mu_{X}=\mu_{Y} \\
& H_{A}: \mu_{X}>\mu_{Y} .
\end{aligned}
$$

- If H_{0} is true, and

$$
S_{p}^{2}=\frac{(n-1) S_{X}^{2}+(m-1) S_{Y}^{2}}{n+m-2}
$$

then

$$
T=\frac{\bar{X}-\bar{Y}}{S_{p} \sqrt{\frac{1}{n}+\frac{1}{m}}}
$$

has a t-distribution with $n+m-2$ degrees of freedom.

The two-sample t-test

- Suppose $X_{1}, X_{2}, \ldots, X_{n}$ and $Y_{1}, Y_{2}, \ldots, Y_{m}$ are independent random samples from $N\left(\mu_{X}, \sigma^{2}\right)$ and $N\left(\mu_{Y}, \sigma^{2}\right)$, respectively.
- Suppose we wish to test the hypotheses

$$
\begin{aligned}
& H_{0}: \mu_{X}=\mu_{Y} \\
& H_{A}: \mu_{X}>\mu_{Y} .
\end{aligned}
$$

- If H_{0} is true, and

$$
S_{p}^{2}=\frac{(n-1) S_{X}^{2}+(m-1) S_{Y}^{2}}{n+m-2}
$$

then

$$
T=\frac{\bar{X}-\bar{Y}}{S_{p} \sqrt{\frac{1}{n}+\frac{1}{m}}}
$$

has a t-distribution with $n+m-2$ degrees of freedom.

- For an observed value t of T, the p-value of the test is $P\left(T \geq t \mid H_{0}\right)$, with appropriate variations for other alternative hypotheses.

Example

Example

- In 1861, ten essays by Quintus Curtius Snodgrass appeared in the New Orleans Crescent. People have wondered whether Snodgrass was really Mark Twain.

Example

- In 1861, ten essays by Quintus Curtius Snodgrass appeared in the New Orleans Crescent. People have wondered whether Snodgrass was really Mark Twain.
- To test this hypothesis, eight essays known to have been written by Twain around 1861 were studied. In particular, the proportion of three letter words in these eight essays were found to be $0.225,0.262$, $0.217,0.240,0.230,0.229,0.235$, and 0.217 .

Example

- In 1861, ten essays by Quintus Curtius Snodgrass appeared in the New Orleans Crescent. People have wondered whether Snodgrass was really Mark Twain.
- To test this hypothesis, eight essays known to have been written by Twain around 1861 were studied. In particular, the proportion of three letter words in these eight essays were found to be $0.225,0.262$, $0.217,0.240,0.230,0.229,0.235$, and 0.217 .
- We will assume these data are from $N\left(\mu_{X}, \sigma^{2}\right)$.

Example

- In 1861, ten essays by Quintus Curtius Snodgrass appeared in the New Orleans Crescent. People have wondered whether Snodgrass was really Mark Twain.
- To test this hypothesis, eight essays known to have been written by Twain around 1861 were studied. In particular, the proportion of three letter words in these eight essays were found to be $0.225,0.262$, $0.217,0.240,0.230,0.229,0.235$, and 0.217 .
- We will assume these data are from $N\left(\mu_{X}, \sigma^{2}\right)$.
- The proportion of three letter words in the Snodgrass essays were found to be $0.209,0.205,0.196,0.210,0.202,0.207,0.224,0.223$, 0.220 , and 0.201 , which we assume to be from $N\left(\mu_{Y}, \sigma^{2}\right)$.

Example

- In 1861, ten essays by Quintus Curtius Snodgrass appeared in the New Orleans Crescent. People have wondered whether Snodgrass was really Mark Twain.
- To test this hypothesis, eight essays known to have been written by Twain around 1861 were studied. In particular, the proportion of three letter words in these eight essays were found to be $0.225,0.262$, $0.217,0.240,0.230,0.229,0.235$, and 0.217 .
- We will assume these data are from $N\left(\mu_{X}, \sigma^{2}\right)$.
- The proportion of three letter words in the Snodgrass essays were found to be $0.209,0.205,0.196,0.210,0.202,0.207,0.224,0.223$, 0.220 , and 0.201 , which we assume to be from $N\left(\mu_{Y}, \sigma^{2}\right)$.
- We wish to test

$$
\begin{aligned}
& H_{0}: \mu_{X}=\mu_{Y} \\
& H_{A}: \mu_{X} \neq \mu_{Y}
\end{aligned}
$$

Example (cont'd)

Example (cont'd)

- We compute $\bar{x}=0.2319, s_{X}^{2}=0.0002121, \bar{y}=0.2097$, $s_{Y}^{2}=0.00009334$, and

$$
s_{p}^{2}=\frac{7 s_{X}^{2}+9 s_{Y}^{2}}{16}=0.0001453
$$

Example (cont'd)

- We compute $\bar{x}=0.2319, s_{X}^{2}=0.0002121, \bar{y}=0.2097$, $s_{Y}^{2}=0.00009334$, and

$$
s_{p}^{2}=\frac{7 s_{X}^{2}+9 s_{Y}^{2}}{16}=0.0001453
$$

- Hence the observed value of T is

$$
t=\frac{0.2319-0.2097}{0.01205 \sqrt{\frac{1}{8}+\frac{1}{10}}}=3.884
$$

Example (cont'd)

- We compute $\bar{x}=0.2319, s_{X}^{2}=0.0002121, \bar{y}=0.2097$, $s_{Y}^{2}=0.00009334$, and

$$
s_{p}^{2}=\frac{7 s_{X}^{2}+9 s_{Y}^{2}}{16}=0.0001453
$$

- Hence the observed value of T is

$$
t=\frac{0.2319-0.2097}{0.01205 \sqrt{\frac{1}{8}+\frac{1}{10}}}=3.884
$$

- The p-value for the test is $2(0.000658722)=0.00131744$.

Example (cont'd)

- We compute $\bar{x}=0.2319, s_{X}^{2}=0.0002121, \bar{y}=0.2097$, $s_{Y}^{2}=0.00009334$, and

$$
s_{p}^{2}=\frac{7 s_{X}^{2}+9 s_{Y}^{2}}{16}=0.0001453
$$

- Hence the observed value of T is

$$
t=\frac{0.2319-0.2097}{0.01205 \sqrt{\frac{1}{8}+\frac{1}{10}}}=3.884
$$

- The p-value for the test is $2(0.000658722)=0.00131744$.
- Thus we have strong evidence for rejecting H_{0}.

Example (cont'd)

- We compute $\bar{x}=0.2319, s_{X}^{2}=0.0002121, \bar{y}=0.2097$, $s_{Y}^{2}=0.00009334$, and

$$
s_{p}^{2}=\frac{7 s_{X}^{2}+9 s_{Y}^{2}}{16}=0.0001453
$$

- Hence the observed value of T is

$$
t=\frac{0.2319-0.2097}{0.01205 \sqrt{\frac{1}{8}+\frac{1}{10}}}=3.884
$$

- The p-value for the test is $2(0.000658722)=0.00131744$.
- Thus we have strong evidence for rejecting H_{0}.
- The R command > t.test($\mathrm{x}, \mathrm{y}, \mathrm{var}$.equal=TRUE) will perform the above analysis if the data are in the vectors \mathbf{x} and \mathbf{y}.

Definition (The F-distribution)

If U and V are independent random variables with distributions $\chi^{2}(m)$ and $\chi^{2}(n)$, respectively, then we call the distribution of

$$
F=\frac{\frac{U}{m}}{\frac{V}{n}}
$$

an F-distribution with m and n degrees of freedom, which we denote $F(m, n)$.

Notes on the F-distribution

- If X is $F(m, n)$, then $\frac{1}{X}$ is $F(n, m)$.

Notes on the F-distribution

- If X is $F(m, n)$, then $\frac{1}{X}$ is $F(n, m)$.
- We let $F_{\alpha, m, n}$ denote the α-quantile of $F(m, n)$.

Notes on the F-distribution

- If X is $F(m, n)$, then $\frac{1}{X}$ is $F(n, m)$.
- We let $F_{\alpha, m, n}$ denote the α-quantile of $F(m, n)$.
- If X is $F(m, n)$, then $P\left(X \leq F_{\alpha, m, n}\right)=\alpha$, and so

$$
P\left(\frac{1}{X} \geq \frac{1}{F_{\alpha, m, n}}\right)=\alpha
$$

Notes on the F-distribution

- If X is $F(m, n)$, then $\frac{1}{X}$ is $F(n, m)$.
- We let $F_{\alpha, m, n}$ denote the α-quantile of $F(m, n)$.
- If X is $F(m, n)$, then $P\left(X \leq F_{\alpha, m, n}\right)=\alpha$, and so

$$
P\left(\frac{1}{X} \geq \frac{1}{F_{\alpha, m, n}}\right)=\alpha
$$

- Hence $\frac{1}{F_{\alpha, m, n}}=F_{1-\alpha, n, m}$.

Notes on the F-distribution

- If X is $F(m, n)$, then $\frac{1}{X}$ is $F(n, m)$.
- We let $F_{\alpha, m, n}$ denote the α-quantile of $F(m, n)$.
- If X is $F(m, n)$, then $P\left(X \leq F_{\alpha, m, n}\right)=\alpha$, and so

$$
P\left(\frac{1}{X} \geq \frac{1}{F_{\alpha, m, n}}\right)=\alpha
$$

- Hence $\frac{1}{F_{\alpha, m, n}}=F_{1-\alpha, n, m}$.
- Example: From Table VIIIb, $F_{0.95,4,7}=4.12$; hence

$$
F_{0.05,7,4}=\frac{1}{4.12}=0.243
$$

Notes on the F-distribution

- If X is $F(m, n)$, then $\frac{1}{X}$ is $F(n, m)$.
- We let $F_{\alpha, m, n}$ denote the α-quantile of $F(m, n)$.
- If X is $F(m, n)$, then $P\left(X \leq F_{\alpha, m, n}\right)=\alpha$, and so

$$
P\left(\frac{1}{X} \geq \frac{1}{F_{\alpha, m, n}}\right)=\alpha
$$

- Hence $\frac{1}{F_{\alpha, m, n}}=F_{1-\alpha, n, m}$.
- Example: From Table VIIIb, $F_{0.95,4,7}=4.12$; hence

$$
F_{0.05,7,4}=\frac{1}{4.12}=0.243
$$

- Using the R commands $>\mathrm{qf}(0.95,4,7)$ and $>\mathrm{qf}(0.05,7,4)$, respectively, we find $F_{0.95,4,7}=4.120312$ and $F_{.05,7,4}=0.2427001$.

Notes on the F-distribution

- If X is $F(m, n)$, then $\frac{1}{X}$ is $F(n, m)$.
- We let $F_{\alpha, m, n}$ denote the α-quantile of $F(m, n)$.
- If X is $F(m, n)$, then $P\left(X \leq F_{\alpha, m, n}\right)=\alpha$, and so

$$
P\left(\frac{1}{X} \geq \frac{1}{F_{\alpha, m, n}}\right)=\alpha
$$

- Hence $\frac{1}{F_{\alpha, m, n}}=F_{1-\alpha, n, m}$.
- Example: From Table VIIIb, $F_{0.95,4,7}=4.12$; hence

$$
F_{0.05,7,4}=\frac{1}{4.12}=0.243
$$

- Using the R commands $>\mathrm{qf}(0.95,4,7)$ and $>\mathrm{qf}(0.05,7,4)$, respectively, we find $F_{0.95,4,7}=4.120312$ and $F_{.05,7,4}=0.2427001$.
- It may be shown that, if X is $F(m, n)$, then

$$
E[X]=\frac{n}{n-2} .
$$

Graph of the density of $F(4,7)$

Comparing variances

- Suppose $X_{1}, X_{2}, \ldots, X_{n}$ and $Y_{1}, Y_{2}, \ldots, Y_{m}$ are independent random samples from $N\left(\mu_{X}, \sigma_{X}^{2}\right)$ and $N\left(\mu_{Y}, \sigma_{Y}^{2}\right)$, respectively.

Comparing variances

- Suppose $X_{1}, X_{2}, \ldots, X_{n}$ and $Y_{1}, Y_{2}, \ldots, Y_{m}$ are independent random samples from $N\left(\mu_{X}, \sigma_{X}^{2}\right)$ and $N\left(\mu_{Y}, \sigma_{Y}^{2}\right)$, respectively.
- Then $\frac{(n-1) S_{X}^{2}}{\sigma_{X}^{2}}$ is $\chi^{2}(n-1)$ and $\frac{(m-1) S_{Y}^{2}}{\sigma_{Y}^{2}}$ is $\chi^{2}(m-1)$.

Comparing variances

- Suppose $X_{1}, X_{2}, \ldots, X_{n}$ and $Y_{1}, Y_{2}, \ldots, Y_{m}$ are independent random samples from $N\left(\mu_{X}, \sigma_{X}^{2}\right)$ and $N\left(\mu_{Y}, \sigma_{Y}^{2}\right)$, respectively.
- Then $\frac{(n-1) S_{X}^{2}}{\sigma_{X}^{2}}$ is $\chi^{2}(n-1)$ and $\frac{(m-1) S_{Y}^{2}}{\sigma_{Y}^{2}}$ is $\chi^{2}(m-1)$.
- So

$$
\frac{\frac{(n-1) S_{X}^{2}}{(n-1) \sigma_{X}^{2}}}{\frac{(m-1) S_{Y}^{2}}{(m-1) \sigma_{Y}^{2}}}=\frac{\sigma_{Y}^{2} S_{X}^{2}}{\sigma_{X}^{2} S_{Y}^{2}}
$$

is $F(n-1, m-1)$.

Comparing variances (cont'd)

- Suppose we wish to test

$$
\begin{aligned}
& H_{0}: \sigma_{X}^{2}=\sigma_{Y}^{2} \\
& H_{A}: \sigma_{X}^{2}>\sigma_{Y}^{2}
\end{aligned}
$$

Comparing variances (cont'd)

- Suppose we wish to test

$$
\begin{aligned}
& H_{0}: \sigma_{X}^{2}=\sigma_{Y}^{2} \\
& H_{A}: \sigma_{X}^{2}>\sigma_{Y}^{2}
\end{aligned}
$$

- If we let $F=\frac{S_{X}^{2}}{S_{Y}^{2}}$, then, under H_{0}, F is $F(n-1, m-1)$.

Comparing variances (cont'd)

- Suppose we wish to test

$$
\begin{aligned}
& H_{0}: \sigma_{X}^{2}=\sigma_{Y}^{2} \\
& H_{A}: \sigma_{X}^{2}>\sigma_{Y}^{2}
\end{aligned}
$$

- If we let $F=\frac{S_{X}^{2}}{S_{Y}^{2}}$, then, under H_{0}, F is $F(n-1, m-1)$.
- Hence we should reject H_{0} when we observe large values f of F, with p-value $P\left(F \geq f \mid H_{0}\right)$.

Comparing variances (cont'd)

- Suppose we wish to test

$$
\begin{aligned}
& H_{0}: \sigma_{X}^{2}=\sigma_{Y}^{2} \\
& H_{A}: \sigma_{X}^{2}>\sigma_{Y}^{2}
\end{aligned}
$$

- If we let $F=\frac{S_{X}^{2}}{S_{Y}^{2}}$, then, under H_{0}, F is $F(n-1, m-1)$.
- Hence we should reject H_{0} when we observe large values f of F, with p-value $P\left(F \geq f \mid H_{0}\right)$.
- To test $H_{A}: \sigma_{X}^{2}<\sigma_{Y}^{2}$, we reject H_{0} for small observed values f of F, in which case the p-value of the test is $P\left(F \leq f \mid H_{0}\right)$.

Comparing variances (cont'd)

- Suppose we wish to test

$$
\begin{aligned}
& H_{0}: \sigma_{X}^{2}=\sigma_{Y}^{2} \\
& H_{A}: \sigma_{X}^{2}>\sigma_{Y}^{2}
\end{aligned}
$$

- If we let $F=\frac{S_{X}^{2}}{S_{Y}^{2}}$, then, under H_{0}, F is $F(n-1, m-1)$.
- Hence we should reject H_{0} when we observe large values f of F, with p-value $P\left(F \geq f \mid H_{0}\right)$.
- To test $H_{A}: \sigma_{X}^{2}<\sigma_{Y}^{2}$, we reject H_{0} for small observed values f of F, in which case the p-value of the test is $P\left(F \leq f \mid H_{0}\right)$.
- For the two-sided alternative $H_{A}: \sigma_{X}^{2} \neq \sigma_{Y}^{2}$, we double the appropriate one-sided p-value.

Example

Example

- For our previous example, supppose the sample from Twain's writings is from $N\left(\mu_{X}, \sigma_{X}^{2}\right)$ and the sample from the writings of Snodgrass is from $N\left(\mu_{Y}, \sigma_{Y}^{2}\right)$.

Example

- For our previous example, supppose the sample from Twain's writings is from $N\left(\mu_{X}, \sigma_{X}^{2}\right)$ and the sample from the writings of Snodgrass is from $N\left(\mu_{Y}, \sigma_{Y}^{2}\right)$.
- Suppose we wish to test

$$
\begin{aligned}
& H_{0}: \sigma_{X}^{2}=\sigma_{Y}^{2} \\
& H_{A}: \sigma_{X}^{2} \neq \sigma_{Y}^{2}
\end{aligned}
$$

Example

- For our previous example, supppose the sample from Twain's writings is from $N\left(\mu_{X}, \sigma_{X}^{2}\right)$ and the sample from the writings of Snodgrass is from $N\left(\mu_{Y}, \sigma_{Y}^{2}\right)$.
- Suppose we wish to test

$$
\begin{aligned}
& H_{0}: \sigma_{X}^{2}=\sigma_{Y}^{2} \\
& H_{A}: \sigma_{X}^{2} \neq \sigma_{Y}^{2}
\end{aligned}
$$

- We compute

$$
f=\frac{s_{X}^{2}}{s_{Y}^{2}}=\frac{0.0002121}{0.00009334}=2.2723
$$

Example

- For our previous example, supppose the sample from Twain's writings is from $N\left(\mu_{X}, \sigma_{X}^{2}\right)$ and the sample from the writings of Snodgrass is from $N\left(\mu_{Y}, \sigma_{Y}^{2}\right)$.
- Suppose we wish to test

$$
\begin{aligned}
& H_{0}: \sigma_{X}^{2}=\sigma_{Y}^{2} \\
& H_{A}: \sigma_{X}^{2} \neq \sigma_{Y}^{2}
\end{aligned}
$$

- We compute

$$
f=\frac{s_{X}^{2}}{s_{Y}^{2}}=\frac{0.0002121}{0.00009334}=2.2723
$$

- Using $F(7,9)$, this gives a p-value of $2(0.1250608)=0.2501216$, giving us no evidence for rejecting H_{0}.

Example

- For our previous example, supppose the sample from Twain's writings is from $N\left(\mu_{X}, \sigma_{X}^{2}\right)$ and the sample from the writings of Snodgrass is from $N\left(\mu_{Y}, \sigma_{Y}^{2}\right)$.
- Suppose we wish to test

$$
\begin{aligned}
& H_{0}: \sigma_{X}^{2}=\sigma_{Y}^{2} \\
& H_{A}: \sigma_{X}^{2} \neq \sigma_{Y}^{2}
\end{aligned}
$$

- We compute

$$
f=\frac{s_{X}^{2}}{s_{Y}^{2}}=\frac{0.0002121}{0.00009334}=2.2723
$$

- Using $F(7,9)$, this gives a p-value of $2(0.1250608)=0.2501216$, giving us no evidence for rejecting H_{0}.
- Note: If the data are in the vectors \mathbf{x} and \mathbf{y}, the R command $>$ var.test (x, y) will perform the above analysis.

