Pivotal Quantities Mathematics 47: Lecture 16

Dan Sloughter

Furman University

March 30, 2006

3 1 4 3

э

Pivotal quantities

Definition

Suppose $X_1, X_2, ..., X_n$ is a random sample from a distribution with parameter θ . If $Y = g(X_1, X_2, ..., X_n, \theta)$ is a random variable whose distribution does not depend on θ , then we call Y a *pivotal quantity* for θ .

Pivotal quantities

Definition

Suppose $X_1, X_2, ..., X_n$ is a random sample from a distribution with parameter θ . If $Y = g(X_1, X_2, ..., X_n, \theta)$ is a random variable whose distribution does not depend on θ , then we call Y a *pivotal quantity* for θ .

Example

In finding confidence intervals for μ given a random sample X_1, X_2, \ldots, X_n from $N(\mu, \sigma^2)$, we used the fact that

$$\frac{\bar{X} - \mu}{\frac{S}{\sqrt{n}}}$$

is a pivotal quantity for μ .

- 4 回 ト - 4 回 ト

Dan Sloughter (Furman University)

-2

(日) (四) (王) (王)

• Suppose X_1, X_2, \ldots, X_n is a random sample from $N(\mu, \sigma^2)$.

• • • • • • • • • • • •

Suppose X₁, X₂, ..., X_n is a random sample from N(μ, σ²).
Then

$$\frac{(n-1)S^2}{\sigma^2}$$

is $\chi^2(n-1)$, and so is a pivotal quantity for σ^2 .

Suppose X₁, X₂, ..., X_n is a random sample from N(μ, σ²).
 Then

$$\frac{(n-1)S^2}{\sigma^2}$$

is $\chi^2(n-1)$, and so is a pivotal quantity for σ^2 . • Let $\chi^2_{n,\alpha}$ be the α quantile of $\chi^2(n)$.

Suppose X₁, X₂, ..., X_n is a random sample from N(μ, σ²).
 Then

$$\frac{(n-1)S^2}{\sigma^2}$$

is $\chi^2(n-1)$, and so is a pivotal quantity for σ^2 . • Let $\chi^2_{n,\alpha}$ be the α quantile of $\chi^2(n)$. • Then $P\left(\chi^2_{n-1,\frac{\alpha}{2}} \leq \frac{(n-1)S^2}{\sigma^2} \leq \chi^2_{n-1,1-\frac{\alpha}{2}}\right) = 1 - \alpha.$

Dan Sloughter (Furman University)

-2

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

► It follows that

$$P\left(\frac{(n-1)S^2}{\chi^2_{n-1,1-\frac{\alpha}{2}}} \le \sigma^2 \le \frac{(n-1)S^2}{\chi^2_{n-1,\frac{\alpha}{2}}}\right) = 1 - \alpha$$

Dan Sloughter (Furman University)

3

(a)

It follows that

$$P\left(\frac{(n-1)S^2}{\chi^2_{n-1,1-\frac{\alpha}{2}}} \le \sigma^2 \le \frac{(n-1)S^2}{\chi^2_{n-1,\frac{\alpha}{2}}}\right) = 1 - \alpha.$$

$$\left(\frac{(n-1)S^2}{\chi^2_{n-1,1-\frac{\alpha}{2}}},\frac{(n-1)S^2}{\chi^2_{n-1,\frac{\alpha}{2}}}\right)$$

is a $100(1-\alpha)\%$ confidence interal for σ^2 .

3

イロト イヨト イヨト イヨト

Dan Sloughter (Furman University)

æ

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

The estimated ages of 19 mineral samples from the Black Forest of Germany were found to be (in millions of years):

249	253	273	260	304
254	269	306	256	283
243	287	303	278	310
268	241	280	344	

The estimated ages of 19 mineral samples from the Black Forest of Germany were found to be (in millions of years):

249	253	273	260	304
254	269	306	256	283
243	287	303	278	310
268	241	280	344	

• Then $s^2 = 733.4$.

The estimated ages of 19 mineral samples from the Black Forest of Germany were found to be (in millions of years):

249	253	273	260	304
254	269	306	256	283
243	287	303	278	310
268	241	280	344	

- Then $s^2 = 733.4$.
- We find (either with *R*, or with Table Va) that $\chi^2_{18,.025} = 8.23$, and $\chi^2_{18,.975} = 31.5$.

l
l
l
l
l
l
l
l
 J

Dan Sloughter (Furman University)

Pivotal Quantities

March 30, 2006 6 / 10

-2

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

▶ So, assuming the sample is from $N(\mu, \sigma^2)$, we see that

$$\left(rac{(18)(733.4)}{31.5},rac{(18)(733.4)}{8.23}
ight)=(419.1,1604.0)$$

is a 95% confidence interval for σ^2 .

▶ So, assuming the sample is from $N(\mu, \sigma^2)$, we see that

$$\left(\frac{(18)(733.4)}{31.5}, \frac{(18)(733.4)}{8.23}\right) = (419.1, 1604.0)$$

is a 95% confidence interval for σ^2 .

Note: Taking square roots, it follows that (20.47, 40.05) is a 95% confidence interval for σ.

Dan Sloughter (Furman University)

 Let X₁, X₂, ..., X_n be a random sample from a uniform distribution on (0, θ).

米部ト 米油ト 米油ト

- Let X_1, X_2, \ldots, X_n be a random sample from a uniform distribution on $(0, \theta)$.
- Recall: the density of $T = X_{(n)}$ is

$$f_T(t) = \begin{cases} rac{n}{ heta^n} t^{n-1}, & ext{if } 0 < t < heta, \ 0, & ext{otherwise.} \end{cases}$$

- Let X_1, X_2, \ldots, X_n be a random sample from a uniform distribution on $(0, \theta)$.
- Recall: the density of $T = X_{(n)}$ is

$$f_T(t) = egin{cases} rac{n}{ heta^n} \ t^{n-1}, & ext{if } 0 < t < heta, \ 0, & ext{otherwise.} \end{cases}$$

• If we let $Y = \frac{T}{A}$, then Y has density

$$f_Y(y) = heta f_T(heta y) = egin{cases} ny^{n-1}, & ext{if } 0 < y < 1, \ 0, & ext{otherwise.} \end{cases}$$

★聞▶ ★注▶ ★注▶

- Let X₁, X₂, ..., X_n be a random sample from a uniform distribution on (0, θ).
- Recall: the density of $T = X_{(n)}$ is

$$f_T(t) = egin{cases} rac{n}{ heta^n} \ t^{n-1}, & ext{if } 0 < t < heta, \ 0, & ext{otherwise.} \end{cases}$$

• If we let $Y = \frac{T}{\theta}$, then Y has density

$$f_Y(y) = heta f_T(heta y) = egin{cases} ny^{n-1}, & ext{if } 0 < y < 1, \ 0, & ext{otherwise.} \end{cases}$$

• Hence Y is a pivotal quantity for θ .

Dan Sloughter (Furman University)

-2

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

► Now the distribution function for *Y* is

$$F_Y(y) = egin{cases} 0, & ext{if } y \leq 0, \ y^n, & ext{if } 0 < y \leq 1, \ 1, & ext{if } y \geq 1. \end{cases}$$

3

(a)

▶ Now the distribution function for *Y* is

$$F_Y(y) = egin{cases} 0, & ext{if } y \leq 0, \ y^n, & ext{if } 0 < y \leq 1, \ 1, & ext{if } y \geq 1. \end{cases}$$

► So, in particular,

$$P\left(Y \le (0.95)^{\frac{1}{n}}\right) = F_Y\left((0.95)^{\frac{1}{n}}\right) = 0.95.$$

Dan Sloughter (Furman University)

(日) (同) (三) (三)

Dan Sloughter (Furman University)

Pivotal Quantities

March 30, 2006 9 / 10

-2

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

3

Note: the interval in the previous example is an example of a one-sided confidence interval, as opposed to the two-sided confidence intervals of our previous examples.

- Note: the interval in the previous example is an example of a one-sided confidence interval, as opposed to the two-sided confidence intervals of our previous examples.
- ► In particular, we call

 $\frac{X_{(n)}}{(0.95)^{\frac{1}{n}}}$

a lower confidence bound for θ .

- Note: the interval in the previous example is an example of a one-sided confidence interval, as opposed to the two-sided confidence intervals of our previous examples.
- ▶ In particular, we call

$$\frac{X_{(n)}}{(0.95)^{\frac{1}{n}}}$$

a lower confidence bound for θ .

Example

-

< 🗇 🕨

- Note: the interval in the previous example is an example of a one-sided confidence interval, as opposed to the two-sided confidence intervals of our previous examples.
- ▶ In particular, we call

$$\frac{X_{(n)}}{(0.95)^{\frac{1}{n}}}$$

a lower confidence bound for θ .

Example

Suppose in a sample of size 20 from a uniform distribution on the interval (0, θ), we find x₍₂₀₎ = 945.1132.

< 4 P ►

- Note: the interval in the previous example is an example of a one-sided confidence interval, as opposed to the two-sided confidence intervals of our previous examples.
- ▶ In particular, we call

$$\frac{X_{(n)}}{(0.95)^{\frac{1}{n}}}$$

a lower confidence bound for θ .

Example

Suppose in a sample of size 20 from a uniform distribution on the interval (0, θ), we find x₍₂₀₎ = 945.1132.

► Then

$$(0.95)^{\frac{1}{20}} \approx 0.9974386,$$

so (947.5402, ∞) is a 95% confidence interval for θ .