lm.summaries {stats} | R Documentation |
All these functions are methods
for class "lm"
objects.
## S3 method for class 'lm': family(object, ...) ## S3 method for class 'lm': formula(x, ...) ## S3 method for class 'lm': residuals(object, type = c("working", "response", "deviance", "pearson", "partial"), ...) ## S3 method for class 'lm': labels(object, ...) weights(object, ...)
object, x |
an object inheriting from class lm , usually
the result of a call to lm or aov . |
... |
further arguments passed to or from other methods. |
type |
the type of residuals which should be returned. |
The generic accessor functions coef
, effects
,
fitted
and residuals
can be used to extract
various useful features of the value returned by lm
.
The working and response residuals are “observed - fitted”. The
deviance and pearson residuals are weighted residuals, scaled by the
square root of the weights used in fitting. The partial residuals
are a matrix with each column formed by omitting a term from the
model. In all these, zero weight cases are never omitted (as opposed
to the standardized rstudent
residuals, and the
weighted.residuals
).
How residuals
treats cases with missing values in the original
fit is determined by the na.action
argument of that fit.
If na.action = na.omit
omitted cases will not appear in the
residuals, whereas if na.action = na.exclude
they will appear,
with residual value NA
. See also naresid
.
The "lm"
method for generic labels
returns the
term labels for estimable terms, that is the names of the terms with
an least one estimable coefficient.
Chambers, J. M. (1992) Linear models. Chapter 4 of Statistical Models in S eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.
The model fitting function lm
, anova.lm
.
coef
, deviance
,
df.residual
,
effects
, fitted
,
glm
for generalized linear models,
influence
(etc on that page) for regression diagnostics,
weighted.residuals
,
residuals
, residuals.glm
,
summary.lm
.
##-- Continuing the lm(.) example: coef(lm.D90)# the bare coefficients ## The 2 basic regression diagnostic plots [plot.lm(.) is preferred] plot(resid(lm.D90), fitted(lm.D90))# Tukey-Anscombe's abline(h=0, lty=2, col = 'gray') qqnorm(residuals(lm.D90))