acf {stats} | R Documentation |
The function acf
computes (and by default plots) estimates of
the autocovariance or autocorrelation function. Function pacf
is the function used for the partial autocorrelations. Function
ccf
computes the cross-correlation or cross-covariance of two
univariate series.
acf(x, lag.max = NULL, type = c("correlation", "covariance", "partial"), plot = TRUE, na.action = na.fail, demean = TRUE, ...) pacf(x, lag.max, plot, na.action, ...) ## Default S3 method: pacf(x, lag.max = NULL, plot = TRUE, na.action = na.fail, ...) ccf(x, y, lag.max = NULL, type = c("correlation", "covariance"), plot = TRUE, na.action = na.fail, ...) acf.obj[i, j]
x, y |
a univariate or multivariate (not ccf ) numeric time
series object or a numeric vector or matrix. |
lag.max |
maximum number of lags at which to calculate the acf. Default is 10*log10(N/m) where N is the number of observations and m the number of series. |
type |
character string giving the type of acf to be computed.
Allowed values are
"correlation" (the default), "covariance" or
"partial" . |
plot |
logical. If TRUE (the default) the acf is plotted. |
na.action |
function to be called to handle missing
values. na.pass can be used. |
demean |
logical. Should the covariances be about the sample means? |
... |
further arguments to be passed to plot.acf . |
acf.obj |
an object of class "acf" resulting from a call
to acf . |
i |
a set of lags to retain. |
j |
a set of series to retain. |
For type
= "correlation"
and "covariance"
, the
estimates are based on the sample covariance.
By default, no missing values are allowed. If the na.action
function passes through missing values (as na.pass
does), the
covariances are computed from the complete cases. This means that the
estimate computed may well not be a valid autocorrelation sequence,
and may contain missing values. Missing values are not allowed when
computing the PACF of a multivariate time series.
The partial correlation coefficient is estimated by fitting
autoregressive models of successively higher orders up to
lag.max
.
The generic function plot
has a method for objects of class
"acf"
.
The lag is returned and plotted in units of time, and not numbers of observations.
There are print
and subsetting methods for objects of class
"acf"
.
An object of class "acf"
, which is a list with the following
elements:
lag |
A three dimensional array containing the lags at which the acf is estimated. |
acf |
An array with the same dimensions as lag containing
the estimated acf. |
type |
The type of correlation (same as the type
argument). |
n.used |
The number of observations in the time series. |
series |
The name of the series x . |
snames |
The series names for a multivariate time series. |
The result is returned invisibly if plot
is TRUE
.
Original: Paul Gilbert, Martyn Plummer.
Extensive modifications and univariate case of pacf
by
B.D. Ripley.
plot.acf
, ARMAacf
for the exact
autocorrelations of a given ARMA process.
## Examples from Venables & Ripley acf(lh) acf(lh, type = "covariance") pacf(lh) acf(ldeaths) acf(ldeaths, ci.type = "ma") acf(ts.union(mdeaths, fdeaths)) ccf(mdeaths, fdeaths) # just the cross-correlations. presidents # contains missing values acf(presidents, na.action = na.pass) pacf(presidents, na.action = na.pass)