
Object-oriented Computation of Sandwich

Estimators

Achim Zeileis
Wirtschaftsuniversität Wien

Abstract

Conceptual and computational tools for calculating various types of sandwich estimators
in different kinds of parametric regression models are discussed.

The theory underlying the package is based on parameter estimates which are computed
from estimating functions and for which a central limit theorem holds. The covariance matrix
is then of a sandwich type: a slice of meat between two slices of bread, pictorially speaking.

The implementation suggested in the sandwich package aims at providing computational
translations for these conceptual tools. This is achieved by defining generic functions for ex-
tracting the bread and the empirical estimating functions from fitted models and by supplying
functions that compute various types of meat fillings from these.

In particular, this should enable computations of sandwich estimators models fitted not
only by lm(), but also glm(), survreg(), and maybe gam(), betareg(), etc.

Keywords: covariance matrix estimators, estimating functions, object orientation, R.

1. Model frame

To fix notations, let us assume we have data in a regression setup, i.e., (yi, xi) for i = 1, . . . , n,
that follow some distribution that is controlled by a k-dimensional parameter vector θ. In many
situations, an estimating function ψ(·) is available for this type of models such that E[ψ(y, x, θ)] =
0. Then, under certain weak regularity conditions, θ can be estimated using an M-estimator θ̂
implicitely defined as

n∑
i=1

ψ(yi, xi, θ̂) = 0. (1)

This includes in particular maximum likelihood (ML) and ordinary least squares (OLS) estimation,
where the estimating function ψ(·) is the derivative of an objective function Ψ(·):

ψ(y, x, θ) =
∂Ψ(y, x, θ)

∂θ
. (2)

Inference about θ is then typically performed relying on a central limit theorem (CLT) of type
√
n (θ̂ − θ) d−→ N(0, S(θ)), (3)

where d−→ denotes convergence in distribution. For the covariance matrix S(θ), a sandwich formula
can be given

S(θ) = B(θ)M(θ)B(θ) (4)

B(θ) = (E[−ψ′(y, x, θ)])−1 (5)
M(θ) = VAR[ψ(y, x, θ)] (6)

i.e., the “meat” of the sandwich M(θ) is the variance of the estimating function and the “bread”
is the inverse of the expectation of its first derivative ψ′ (again with respect to θ). (Note that

2 Object-oriented Computation of Sandwich Estimators

we use the more evocative names S, B and M instead of the more conventional notation V (θ) =
A(θ)−1B(θ)A(θ)−1.)
In correctly specified models, estimated by ML, this sandwich expression for S(θ) can be simplified
because both M(θ) = B(θ)−1 correspond to the Fisher information matrix. Hence, the variance
S(θ) in the CLT from Equation 3 is typically estimated by an empirical version of B(θ). However,
covariance matrix estimates that are in some sense robust against misspecification can usually be
obtained by plugging estimates for both B(θ) and M(θ) into the sandwich formula for S(θ) from
Equation 4.
Many of the models of interest to us, provide some more structure: the objective function Ψ(y, x, θ)
depends on x and θ in a special way, namely it does only depend on the univariate linear predictor
η = x>θ. Then, the estimating function is of type

ψ(y, x, θ) =
∂Ψ
∂η

· ∂η
∂θ

=
∂Ψ
∂η

· x.

The partial derivative r(y, η) = ∂Ψ(y, η)/∂η is in some models also called “working residual”
correpsonding to the usual residuals in linear regression models. In such models based on linear
predictors, the meat of the sandwich can also be written as

M(θ) = xVAR[r(y, x>θ)]x>. (7)

2. Covariance matrix estimators

To make use of the theory outlined in the previous section, the model has to be fitted (i.e., the
parameters have to be estimated as in Equation 1) and subsequently inference can be performed
relying on the CLT from Equation 3 and employing different types of sandwich estimators for
S(θ).

In R, there are already many model fitting functions which compute estimates θ̂ for a multitude
of regression models that can be seen as special cases of the framework outlined above. These
typically have a coef() method which extracts the parameter estimates θ̂ and an estimate for the
covariance matrix is available via a vcov() method. Inference relying on this covariance matrix
is typically provided in the summary() method (partial t or z tests) and anova() method (F
or χ2 tests for nested models). The covariance estimate returned by vcov() usually relies on
the assumption of correctly specified models estimated via ML and hence is simply an empirical
version of B(θ) that is then divided by n. The simplest estimator is

B̂ =

(
1
n

n∑
i=1

−ψ′(yi, xi, θ̂)

)−1

. (8)

Re-using these tools, the sandwich package aims at providing other (more robust) sandwich esti-
mators in this general setup. Therefore, we propose the following tools.

The bread

Estimating the bread B(θ) is usually relatively easy and hence often not dealt with in publications
about sandwich estimators. As the simple estimator from Equation 8 is typically already provided
in fitted model objects, it suffices to simply provide a generic function bread() which has a method
for each class of fitted models. For“lm”and“glm”all the necessary information can be conveniently
obtained from the summary() method:

bread.lm <- function(x, ...)

{

Achim Zeileis 3

sx <- summary(x)

sx$cov.unscaled * as.vector(sum(sx$df[1:2]))

}

Similarly simple functions are provided for “survreg”, “coxph and “gam” objects.

The meat

While the bread B(θ) is almost always estimated by B̂ from Equation 8, various different types
of estimators are available for the meat M(θ), most of which are based on the empirical values of
estimating functions. Hence, a natural idea for object-oriented implementation of such estimators
is the following: provide various functions that compute different estimators for the meat based
only on an estfun() extractor function that extracts the empirical estimating function from a
fitted model object. The estfun() method should return an n× k matrix with ψ(y1, x1, θ̂)

...
ψ(yn, xn, θ̂)

 .

Based on this the function meat() can simply compute crossproducts for deriving a simple esti-
mator of M(θ). This corresponds to the Eicker-Huber-White HC estimator and is sometimes also
called outer product of gradients estimator. A simplified version of the R code is

meat <- function(x)

{

psi <- estfun(x)

crossprod(psi)/NROW(psi)

}

More elaborate estimators are also available: meatHAC() computes an estimate based on the
weighted (empirical) autocorrelations of the (empirical) estimating function. An extremely sim-
plified version of meatHAC() is

meatHAC <- function(x, weights)

{

psi <- estfun(x)

n <- NROW(psi)

rval <- 0.5 * crossprod(psi) * weights[1]

for(i in 2:length(weights))

rval <- rval + weights[i] * crossprod(psi[1:(n-i+1),], psi[i:n,])

(rval + t(rval))/n

}

Finally, we would like to provide HC estimators via meatHC() for which we need a bit more
infrastructure. Relying on Equation 7 we want to estimate M(θ) by a matrix of type 1/nX>ΩX
where X is the regressor matrix and Ω is a diagonal matrix estimating the variance of r(y, η).
Various forms for this diagonal matrix Ω have been suggested, they all depend on the vector of
the observed (r(y1, x>1 θ̂), . . . , r(yn, x

>
n θ̂))

>, the hat values and the degrees of freedom. Instead
of basing this on a seperate generic for this type of residuals, it is also possible to recover it
from the estimating function. As ψ(yi, xi, θ̂) = r(yi, x

>
i θ̂) · xi, we can simply divide the empirical

estimating function by xi and obtain the residual. Consequently, we only need a way to extract
the regressor matrix from the fitted model (via the model.matrix() method), the hat values (via
the hatvalues() method) and the residual degrees of freedom (via the df.residual() method).
A condensed version of meatHC() can then be given as

4 Object-oriented Computation of Sandwich Estimators

meatHC <- function(x, omega)

{

X <- if(is.matrix(x$x)) x$x else model.matrix(x)

n <- NROW(X)

diaghat <- hatvalues(x)

df <- df.residual(x)

if(is.null(df)) df <- n - NCOL(X)

res <- rowMeans(estfun(x)/X, na.rm = TRUE)

if(is.function(omega)) omega <- omega(res, diaghat, df)

rval <- sqrt(omega) * X

crossprod(rval)/n

}

The sandwich

Computing the sandwich is easy given the previous building blocks. Currently, the function
sandwich() computes an estimate for 1/nS(θ) via

sandwich <- function(x, bread. = bread, meat. = meat, ...)

{

if(is.function(bread.)) bread. <- bread.(x)

if(is.function(meat.)) meat. <- meat.(x, ...)

1/NROW(estfun(x)) * (bread. %*% meat. %*% bread.)

}

and meat. could also be set to meatHAC or meatHC.
Therefore, all that a useR/developeR would have to do to make a new class of models, “foo”
say, fit for this framework is: provide an estfun() method estfun.foo() and a bread() method
bread.foo(). See also Figure 1.
Only for HC estimators (other than HC0 and HC1 which are available via meat()), it has to be
assured in addtion that

• the model only depends on a linear predictor (this cannot be easily checked by the software,
but has to be done by the user),

• the model matrix X is available (via a model.matrix.foo() method),

• a hatvalues.foo() method exists (for HC2–HC4), and

• a df.residual.foo() method exists (or the default n− k are correct).

Achim Zeileis 5

fitted model object
(class: foo)

estfun foo

meatHC meatHAC meat bread foo

Figure 1: Structure of sandwich estimators

	Model frame
	Covariance matrix estimators

