Lecture 9: Cardinality

9.1 Binary representations

Suppose {a, }52 is a sequence such that, for each n = 1,2,3,..., either a, =0 or a, =1
and, for any integer N, there exists an integer n > N such that a,, = 0. Then
1
0<om < =
—2n T 2n
forn =1,2,3,..., so the infinite series

>0
> 5
2n
n=1
converges to some real number = by the comparison test. Moreover,

= 1
0§x<2%ﬁ:L
n=1
We call the sequence {a, }52, the binary representation for x, and write

T = .aq1d24a3d4 ....

Exercise 9.1.1
Suppose {a, }52, and {b,}52L, are both binary representations for x. Show that a, = b,
forn=1,2,3,....

Now suppose € R with 0 < « < 1. Construct a sequence {a,}52, as follows: If
0<z < %, let a; = 0; otherwise, let a3 = 1. Forn =1,2,3,..., let

7

Sp = 2_n
=1
and set a,4+1 = 1 if
Sn + ont1 <z

and a,4+1 = 0 otherwise.
Lemma With the notation as above, s, <z < s, + 2% forn=1,2,3,....

Proof Since
0, if0<z<i,
S1 = 1 e 1 2
7 if 3 S T < ]_7
it 1s clear that s1 < z < 51 +
Sp—1 + 2% <z, then a, =1 and

So suppose n > 1 and s,—1 < * < $,-1 + 2,1%1 If

NI

1< 1 1 1 1
Sn:3n—1-|—2—n_91?<3n—1-|—2n—_1:3n—1—|—2—n—|-2—n:Sn—|-2—n-

9-1
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fax<s,_1+ 2%, then a, = 0 and

1 1
Snzsn—1§x<8n—1+2—n=8n+2—n.

oo an

Proposition With the notation as above, z =) "~ | o=

Proof Given € > 0, choose an integer N such that 2LN < €. Then, for any n > N, it
follows from the lemma that

1 1
|Sn—$|<2—n<2—N<€
Hence
o)
. an
r = lim s, = —,
n—o0o on
n=1

Lemma With the notation as above, given any integer N there exists an integer n > N
such that a, = 0.

Proof Ifa,=1forn=1,2,3, ..., then

=1
:1;:2_:12—”:1,

contradicting the assumption that 0 < x < 1. Now suppose there exists an integer N such
that any = 0 but a,, = 1 for every n > N. Then

= 1 = 1 1
r =SSN+ Z 2—n:3N—1‘|‘ Z 2—n:3N—1‘|‘2—N7
n=N+1 n=N+1

implying that any = 1, and thus contradicting the assumption that ay = 0.

Combining the previous lemma with the previous proposition yields the following result.
Proposition With the notation as above, x = .ayasasay . ...

Thus we have shown that for every real number 0 < z < 1 there exists a unique binary

representation.

9.2 Cardinality

Definition A function ¢ : A — B is said to be a one-to-one correspondence if ¢ is both
one-to-one and onto.

Definition We say sets A and B have the same cardinality if there exists a one-to-one
correspondence ¢ : A — B.

We denote the fact that A and B have the same cardinality by writing |A| = |B].
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Exercise 9.2.1
Define a relation on sets by setting A ~ B if and only if |A| = |B|. Show that this relation
is an equivalence relation.

Definition Let A be a set. If A has the cardinality of the set {1,2,3,...,n}, n € ZT,
we say A is finite and write |A| = n. If A has the cardinality of ZT, we say A is countable
and write |A| = Ng.

Example If we define ¢ : ZT — Z by

2 Y

e
—5, if nis even,

nol o if nis odd,
p(n) =

then ¢ is a one-to-one correspondence. Thus |Z| = Ry.

Exercise 9.2.2
Let A be the set of even integers. Show that |A| = No.

Exercise 9.2.3

(a) Let A be a nonempty subset of Z7". Show that A is either finite or countable.

(b) Let A be a nonempty subset of a countable set B. Show that A is either finite or
countable.

Proposition Suppose A and B are countable sets. Then the set C' = AU B is countable.
Proof Suppose A and B are disjoint, that is, ANB = 0. Let o : ZT — Aand : Z* — B

be one-to-one correspondences. Define 7 : ZT — C by

{c,o("—l>, if n is odd,

7(n) =

Then 7 is a one-to-one correspondence, showing that C' is countable.
If A and B are not disjoint, then 7 is onto but not one-to-one. However, in that case
C has the cardinality of an infinite subset of ZT, and so is countable.

Definition A nonempty set which is not finite is said to be infinite. An infinite set
which is not countable is said to be uncountable.

Exercise 9.2.4
Suppose A is uncountable and B C A is countable. Show that A \ B is uncountable.

Proposition Suppose A and B are countable. Then C' = A x B is countable.
Proof Let ¢:Z" — Aand ¢ : ZT — B be one-to-one correspondences. Let a; = (i)
and b; = ¢(7). Define 7 : ZT — C by letting

(1) = (a1, b1),
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7(4) = (a1, b3),
7(5) = (a2, b2),
7(6) = (a3,b1),
7(7) = (a1, b4),

That is, form the infinite matrix with (a;,b;) in the ith row and jth column, and then
count the entries by reading down the diagonals from right to left. Then 7 is a one-to-one
correspondence and C' is countable.

Proposition @ is countable.

Proof By the previous proposition, Z x Z is countable. Let

A=A{(p,q) : p,q € Z,q > 0,p and q relatively prime}.
Then A is infinite and A C Z x Z, so A is countable. But clearly |Q| = |A|, so Q is
countable.

Proposition Suppose for each i € Z1, 4; is countable. Then B = Ui2, A; is countable.

Proof Suppose the sets A;, i € ZT, are pairwise disjoint, that is, 4; N A;j =0 for all
i,j € Z%. For each i € ZT, let p; : ZT7 — A; be a one-to-one correspondence. Then
Y ZT x ZT — B defined by

v(i,) = wilj)

is a one-to-one correspondence, and so |B| = |ZT x ZT| = X,.

If the sets A;, i € ZT, are not disjoint, then « is onto but not one-to-one. But then
there exists a subset P of ZT x ZT such that ¢ : P — B is a one-to-one correspondence.
Since P is an infinite subset of a countable set, P is countable and so |B| = Rg.

If in the previous proposition we allow that, for each i € ZT, A; is either finite or
countable, then B = |J;=, A; will be either finite or countable.

Definition Given a set A, the set of all subsets of A is called the power set of A, which
we denote P(A).

Example If A= {1,2 3}, then
P(A) = {0, {1}, {2}, {3}.{1.2}.{1.3}.{2,3}.{1.2,3}.

Proposition If A is finite with |A| = n, then |P(4)| = 2".

Proof Let
B ={(b1,b2,...,0p):b;=00rb;=1,1=1,2,...,n}
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and let a1, aq,...,a, be the elements of A. Define ¢ : B — P(A) by letting
©(b1,ba, ..., b)) ={a; :b; =1,i=1,2,...,n}.

Then ¢ is a one-to-one correspondence. The result now follows from the next exercise.

Exercise 9.2.5
With B as in the previous proposition, show that |B| = 2.

In analogy with the case when A is finite, we let 2141 = |P(A4)| for any nonempty set
A.

Definition Suppose A and B are sets for which there exists a one-to-one function ¢ :
A — B but there does not exist a one-to-one correspondence ¥ : A — B. Then we write

Al < |B.
Theorem If A is a nonempty set, then |A| < [P(A)].

Proof Define ¢ : A — P(A) by ¢(a) = {a}. Then ¢ is one-to-one. Now suppose
Y A — P(A) is any one-to-one function. Let

C={a:a€Aad¢gip(a)}.

Suppose there exists a € A such that ¢»(a) = C. Then a € C if and only if ¢ ¢ C, an
obvious contradiction. Thus C is not in the range of ¥, and so % is not a one-to-one
correspondence.

Lemma Let A be the set of all sequences {a;}52,; with ¢; = 0 or a; = 1 for each

i =1,2,3,.... Then |A| = |P(Z7)|.
Proof Define p: A — P(ZT) by

o(({a;}2y)={i:0¢€ 7", a; = 1}.

Then ¢ is a one-to-one correspondence.

Now let B be the set of all sequences {a;}72; in A such that for every integer N there
exists an integer n > N such that a, = 0. Let C = A\ B,

Do ={{ai}2y rai =1,i=1,2,3,.. .},

and

Dj={{a;}2, :a; = 0,a = 1 for k > j}
for j =1,2,3,.... Then |Dg| =1 and |D;| = 271 for j =1,2,3,.... Moreover,

¢ = [j Dj,
j=0
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so C is countable. Since A = BUC', and A is uncountable, it follows that B is uncountable.
Now if we let
I={z:2eR 0z <1},

we have seen that the function ¢ : B — I defined by

¥ ({ai}ioil) = .a1090304 . ..

is a one-to-one correspondence. It follows that I is uncountable. As a consequence, we
have the following result.

Proposition R is uncountable.

Exercise 9.2.6

Let [ ={z:2 € R,0 <z < 1}. Show that
() 1= [{z:z €R0 <z < 1)

(b) I|=Hz:2 e R,0 < x < 1}

(c) [ I|={z: 2 eR,0< 2 <2}

(d) I|=Hz:zeR, -1 <a <1}

Exercise 9.2.7
Let I ={z:2 € R,0 <2 < 1} and suppose a and b are real numbers with a« < b. Show
that

Il ={z:2 e R,a <2 <b}|.

Exercise 9.2.8
Does there exist a set A C R for which 8y < |A] < 2%0? (Before working too long on this
probem, you may wish to read about Cantor’s continuum hypothesis.)



