## Lecture 9: Cardinality

### 9.1 Binary representations

Suppose $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a sequence such that, for each $n=1,2,3, \ldots$, either $a_{n}=0$ or $a_{n}=1$ and, for any integer $N$, there exists an integer $n>N$ such that $a_{n}=0$. Then

$$
0 \leq \frac{a_{n}}{2^{n}} \leq \frac{1}{2^{n}}
$$

for $n=1,2,3, \ldots$, so the infinite series

$$
\sum_{n=1}^{\infty} \frac{a_{n}}{2^{n}}
$$

converges to some real number $x$ by the comparison test. Moreover,

$$
0 \leq x<\sum_{n=1}^{\infty} \frac{1}{2^{n}}=1
$$

We call the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ the binary representation for $x$, and write

$$
x=. a_{1} a_{2} a_{3} a_{4} \ldots
$$

## Exercise 9.1.1

Suppose $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$ are both binary representations for $x$. Show that $a_{n}=b_{n}$ for $n=1,2,3, \ldots$.

Now suppose $x \in \mathbb{R}$ with $0 \leq x<1$. Construct a sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ as follows: If $0 \leq x<\frac{1}{2}$, let $a_{1}=0 ;$ otherwise, let $a_{1}=1$. For $n=1,2,3, \ldots$, let

$$
s_{n}=\sum_{i=1}^{n} \frac{a_{i}}{2^{n}}
$$

and set $a_{n+1}=1$ if

$$
s_{n}+\frac{1}{2^{n+1}} \leq x
$$

and $a_{n+1}=0$ otherwise.
Lemma With the notation as above, $s_{n} \leq x<s_{n}+\frac{1}{2^{n}}$ for $n=1,2,3, \ldots$.
Proof Since

$$
s_{1}= \begin{cases}0, & \text { if } 0 \leq x<\frac{1}{2}, \\ \frac{1}{2}, & \text { if } \frac{1}{2} \leq x<1,\end{cases}
$$

it is clear that $s_{1} \leq x<s_{1}+\frac{1}{2}$. So suppose $n>1$ and $s_{n-1} \leq x<s_{n-1}+\frac{1}{2^{n-1}}$. If $s_{n-1}+\frac{1}{2^{n}} \leq x$, then $a_{n}=1$ and

$$
s_{n}=s_{n-1}+\frac{1}{2^{n}} \leq x<s_{n-1}+\frac{1}{2^{n-1}}=s_{n-1}+\frac{1}{2^{n}}+\frac{1}{2^{n}}=s_{n}+\frac{1}{2^{n}} .
$$

If $x<s_{n-1}+\frac{1}{2^{n}}$, then $a_{n}=0$ and

$$
s_{n}=s_{n-1} \leq x<s_{n-1}+\frac{1}{2^{n}}=s_{n}+\frac{1}{2^{n}}
$$

Proposition With the notation as above, $x=\sum_{n=1}^{\infty} \frac{a_{n}}{2^{n}}$.
Proof Given $\epsilon>0$, choose an integer $N$ such that $\frac{1}{2^{N}}<\epsilon$. Then, for any $n>N$, it follows from the lemma that

$$
\left|s_{n}-x\right|<\frac{1}{2^{n}}<\frac{1}{2^{N}}<\epsilon .
$$

Hence

$$
x=\lim _{n \rightarrow \infty} s_{n}=\sum_{n=1}^{\infty} \frac{a_{n}}{2^{n}} .
$$

Lemma With the notation as above, given any integer $N$ there exists an integer $n>N$ such that $a_{n}=0$.

Proof If $a_{n}=1$ for $n=1,2,3, \ldots$, then

$$
x=\sum_{n=1}^{\infty} \frac{1}{2^{n}}=1
$$

contradicting the assumption that $0 \leq x<1$. Now suppose there exists an integer $N$ such that $a_{N}=0$ but $a_{n}=1$ for every $n>N$. Then

$$
x=s_{N}+\sum_{n=N+1}^{\infty} \frac{1}{2^{n}}=s_{N-1}+\sum_{n=N+1}^{\infty} \frac{1}{2^{n}}=s_{N-1}+\frac{1}{2^{N}}
$$

implying that $a_{N}=1$, and thus contradicting the assumption that $a_{N}=0$.
Combining the previous lemma with the previous proposition yields the following result.
Proposition With the notation as above, $x=. a_{1} a_{2} a_{3} a_{4} \ldots$.
Thus we have shown that for every real number $0 \leq x<1$ there exists a unique binary representation.

### 9.2 Cardinality

Definition A function $\varphi: A \rightarrow B$ is said to be a one-to-one correspondence if $\varphi$ is both one-to-one and onto.

Definition We say sets $A$ and $B$ have the same cardinality if there exists a one-to-one correspondence $\varphi: A \rightarrow B$.

We denote the fact that $A$ and $B$ have the same cardinality by writing $|A|=|B|$.

## Exercise 9.2.1

Define a relation on sets by setting $A \sim B$ if and only if $|A|=|B|$. Show that this relation is an equivalence relation.
Definition Let $A$ be a set. If $A$ has the cardinality of the set $\{1,2,3, \ldots, n\}, n \in \mathbb{Z}^{+}$, we say $A$ is finite and write $|A|=n$. If $A$ has the cardinality of $\mathbb{Z}^{+}$, we say $A$ is countable and write $|A|=\aleph_{0}$.
Example If we define $\varphi: \mathbb{Z}^{+} \rightarrow \mathbb{Z}$ by

$$
\varphi(n)= \begin{cases}\frac{n-1}{2}, & \text { if } n \text { is odd } \\ -\frac{n}{2}, & \text { if } n \text { is even }\end{cases}
$$

then $\varphi$ is a one-to-one correspondence. Thus $|\mathbb{Z}|=\aleph_{0}$.

## Exercise 9.2.2

Let $A$ be the set of even integers. Show that $|A|=\aleph_{0}$.
Exercise 9.2.3
(a) Let $A$ be a nonempty subset of $\mathbb{Z}^{+}$. Show that $A$ is either finite or countable.
(b) Let $A$ be a nonempty subset of a countable set $B$. Show that $A$ is either finite or countable.

Proposition Suppose $A$ and $B$ are countable sets. Then the set $C=A \cup B$ is countable.
Proof Suppose $A$ and $B$ are disjoint, that is, $A \cap B=\emptyset$. Let $\varphi: \mathbb{Z}^{+} \rightarrow A$ and $\psi: \mathbb{Z}^{+} \rightarrow B$ be one-to-one correspondences. Define $\tau: \mathbb{Z}^{+} \rightarrow C$ by

$$
\tau(n)= \begin{cases}\varphi\left(\frac{n+1}{2}\right), & \text { if } n \text { is odd } \\ \psi\left(\frac{n}{2}\right), & \text { if } n \text { is even }\end{cases}
$$

Then $\tau$ is a one-to-one correspondence, showing that $C$ is countable.
If $A$ and $B$ are not disjoint, then $\tau$ is onto but not one-to-one. However, in that case $C$ has the cardinality of an infinite subset of $\mathbb{Z}^{+}$, and so is countable.

Definition A nonempty set which is not finite is said to be infinite. An infinite set which is not countable is said to be uncountable.

## Exercise 9.2.4

Suppose $A$ is uncountable and $B \subset A$ is countable. Show that $A \backslash B$ is uncountable.
Proposition Suppose $A$ and $B$ are countable. Then $C=A \times B$ is countable.
Proof Let $\varphi: \mathbb{Z}^{+} \rightarrow A$ and $\psi: \mathbb{Z}^{+} \rightarrow B$ be one-to-one correspondences. Let $a_{i}=\varphi(i)$ and $b_{i}=\psi(i)$. Define $\tau: \mathbb{Z}^{+} \rightarrow C$ by letting

$$
\begin{aligned}
& \tau(1)=\left(a_{1}, b_{1}\right), \\
& \tau(2)=\left(a_{1}, b_{2}\right), \\
& \tau(3)=\left(a_{2}, b_{1}\right),
\end{aligned}
$$

$$
\begin{aligned}
& \tau(4)=\left(a_{1}, b_{3}\right), \\
& \tau(5)=\left(a_{2}, b_{2}\right), \\
& \tau(6)=\left(a_{3}, b_{1}\right), \\
& \tau(7)=\left(a_{1}, b_{4}\right),
\end{aligned}
$$

That is, form the infinite matrix with $\left(a_{i}, b_{j}\right)$ in the $i$ th row and $j$ th column, and then count the entries by reading down the diagonals from right to left. Then $\tau$ is a one-to-one correspondence and $C$ is countable.

Proposition $\mathbb{Q}$ is countable.
Proof By the previous proposition, $\mathbb{Z} \times \mathbb{Z}$ is countable. Let

$$
A=\{(p, q): p, q \in \mathbb{Z}, q>0, p \text { and } q \text { relatively prime }\}
$$

Then $A$ is infinite and $A \subset \mathbb{Z} \times \mathbb{Z}$, so $A$ is countable. But clearly $|\mathbb{Q}|=|A|$, so $\mathbb{Q}$ is countable.

Proposition Suppose for each $i \in \mathbb{Z}^{+}, A_{i}$ is countable. Then $B=\bigcup_{i=1}^{\infty} A_{i}$ is countable.
Proof Suppose the sets $A_{i}, i \in \mathbb{Z}^{+}$, are pairwise disjoint, that is, $A_{i} \cap A_{j}=\emptyset$ for all $i, j \in \mathbb{Z}^{+}$. For each $i \in \mathbb{Z}^{+}$, let $\varphi_{i}: \mathbb{Z}^{+} \rightarrow A_{i}$ be a one-to-one correspondence. Then $\psi: \mathbb{Z}^{+} \times \mathbb{Z}^{+} \rightarrow B$ defined by

$$
\psi(i, j)=\varphi_{i}(j)
$$

is a one-to-one correspondence, and so $|B|=\left|\mathbb{Z}^{+} \times \mathbb{Z}^{+}\right|=\aleph_{0}$.
If the sets $A_{i}, i \in \mathbb{Z}^{+}$, are not disjoint, then $\psi$ is onto but not one-to-one. But then there exists a subset $P$ of $\mathbb{Z}^{+} \times \mathbb{Z}^{+}$such that $\psi: P \rightarrow B$ is a one-to-one correspondence. Since $P$ is an infinite subset of a countable set, $P$ is countable and so $|B|=\aleph_{0}$.

If in the previous proposition we allow that, for each $i \in \mathbb{Z}^{+}, A_{i}$ is either finite or countable, then $B=\bigcup_{i=1}^{\infty} A_{i}$ will be either finite or countable.
Definition Given a set $A$, the set of all subsets of $A$ is called the power set of $A$, which we denote $\mathcal{P}(A)$.

Example If $A=\{1,2,3\}$, then

$$
\mathcal{P}(A)=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\} .
$$

Proposition If $A$ is finite with $|A|=n$, then $|\mathcal{P}(A)|=2^{n}$.
Proof Let

$$
B=\left\{\left(b_{1}, b_{2}, \ldots, b_{n}\right): b_{i}=0 \text { or } b_{i}=1, i=1,2, \ldots, n\right\}
$$

and let $a_{1}, a_{2}, \ldots, a_{n}$ be the elements of $A$. Define $\varphi: B \rightarrow \mathcal{P}(A)$ by letting

$$
\varphi\left(b_{1}, b_{2}, \ldots, b_{n}\right)=\left\{a_{i}: b_{i}=1, i=1,2, \ldots, n\right\} .
$$

Then $\varphi$ is a one-to-one correspondence. The result now follows from the next exercise.

## Exercise 9.2.5

With $B$ as in the previous proposition, show that $|B|=2^{n}$.
In analogy with the case when $A$ is finite, we let $2^{|A|}=|\mathcal{P}(A)|$ for any nonempty set A.

Definition Suppose $A$ and $B$ are sets for which there exists a one-to-one function $\varphi$ : $A \rightarrow B$ but there does not exist a one-to-one correspondence $\psi: A \rightarrow B$. Then we write $|A|<|B|$.

Theorem If $A$ is a nonempty set, then $|A|<|\mathcal{P}(A)|$.
Proof Define $\varphi: A \rightarrow \mathcal{P}(A)$ by $\varphi(a)=\{a\}$. Then $\varphi$ is one-to-one. Now suppose $\psi: A \rightarrow \mathcal{P}(A)$ is any one-to-one function. Let

$$
C=\{a: a \in A, a \notin \psi(a)\} .
$$

Suppose there exists $a \in A$ such that $\psi(a)=C$. Then $a \in C$ if and only if $a \notin C$, an obvious contradiction. Thus $C$ is not in the range of $\psi$, and so $\psi$ is not a one-to-one correspondence.
Lemma Let $A$ be the set of all sequences $\left\{a_{i}\right\}_{i=1}^{\infty}$ with $a_{i}=0$ or $a_{i}=1$ for each $i=1,2,3, \ldots$. Then $|A|=\left|\mathcal{P}\left(\mathbb{Z}^{+}\right)\right|$.
Proof Define $\varphi: A \rightarrow \mathcal{P}\left(\mathbb{Z}^{+}\right)$by

$$
\varphi\left(\left(\left\{a_{i}\right\}_{i=1}^{\infty}\right)=\left\{i: i \in \mathbb{Z}^{+}, a_{i}=1\right\}\right.
$$

Then $\varphi$ is a one-to-one correspondence.
Now let $B$ be the set of all sequences $\left\{a_{i}\right\}_{i=1}^{\infty}$ in $A$ such that for every integer $N$ there exists an integer $n>N$ such that $a_{n}=0$. Let $C=A \backslash B$,

$$
D_{0}=\left\{\left\{a_{i}\right\}_{i=1}^{\infty}: a_{i}=1, i=1,2,3, \ldots\right\},
$$

and

$$
D_{j}=\left\{\left\{a_{i}\right\}_{i=1}^{\infty}: a_{j}=0, a_{k}=1 \text { for } k>j\right\}
$$

for $j=1,2,3, \ldots$. Then $\left|D_{0}\right|=1$ and $\left|D_{j}\right|=2^{j-1}$ for $j=1,2,3, \ldots$. Moreover,

$$
C=\bigcup_{j=0}^{\infty} D_{j}
$$

so $C$ is countable. Since $A=B \cup C$, and $A$ is uncountable, it follows that $B$ is uncountable. Now if we let

$$
I=\{x: x \in \mathbb{R}, 0 \leq x<1\}
$$

we have seen that the function $\varphi: B \rightarrow I$ defined by

$$
\varphi\left(\left\{a_{i}\right\}_{i=1}^{\infty}\right)=. a_{1} a_{2} a_{3} a_{4} \ldots
$$

is a one-to-one correspondence. It follows that $I$ is uncountable. As a consequence, we have the following result.
Proposition $\mathbb{R}$ is uncountable.

## Exercise 9.2.6

Let $I=\{x: x \in \mathbb{R}, 0 \leq x<1\}$. Show that
(a) $|I|=|\{x: x \in \mathbb{R}, 0 \leq x \leq 1\}|$
(b) $|I|=|\{x: x \in \mathbb{R}, 0<x<1\}|$
(c) $|I|=|\{x: x \in \mathbb{R}, 0<x<2\}|$
(d) $|I|=|\{x: x \in \mathbb{R},-1<x<1\}|$

## Exercise 9.2.7

Let $I=\{x: x \in \mathbb{R}, 0 \leq x<1\}$ and suppose $a$ and $b$ are real numbers with $a<b$. Show that

$$
|I|=|\{x: x \in \mathbb{R}, a \leq x<b\}| .
$$

## Exercise 9.2.8

Does there exist a set $A \subset \mathbb{R}$ for which $\aleph_{0}<|A|<2^{\aleph_{0}}$ ? (Before working too long on this probem, you may wish to read about Cantor's continuum hypothesis.)

