Lecture 8: Infinite Series

8.1 Infinite series

Definition Given a sequence $\left\{a_{i}\right\}_{i=m}^{\infty}$, let $\left\{s_{n}\right\}_{n=m}^{\infty}$ be the sequence defined by

$$
s_{n}=\sum_{i=m}^{n} a_{i} .
$$

We call the sequence $\left\{s_{n}\right\}_{n=m}^{\infty}$ an infinite series. If $\left\{s_{n}\right\}_{n=m}^{\infty}$ converges, we call

$$
s=\lim _{n \rightarrow \infty} s_{n}
$$

the sum of the series. For any integer n, s_{n} is called a partial sum of the series.
We will use the notation

$$
\sum_{i=m}^{\infty} a_{i}
$$

to denote either $\left\{s_{n}\right\}_{n=m}^{\infty}$, the infinite series, or s, the sum of the infinite series. Of course, if $\left\{s_{n}\right\}_{n=m}^{\infty}$ diverges, then we say $\sum_{i=m}^{\infty} a_{i}$ diverges.

Exercise 8.1.1

Suppose $\sum_{i=m}^{\infty} a_{i}$ converges and $\beta \in \mathbb{R}$. Show that $\sum_{i=m}^{\infty} \beta a_{i}$ also converges and

$$
\sum_{i=m}^{\infty} \beta a_{i}=\beta \sum_{i=m}^{\infty} a_{i} .
$$

Exercise 8.1.2

Suppose both $\sum_{i=m}^{\infty} a_{i}$ and $\sum_{i=m}^{\infty} b_{i}$ converge. Show that $\sum_{i=m}^{\infty}\left(a_{i}+b_{i}\right)$ converges and

$$
\sum_{i=m}^{\infty}\left(a_{i}+b_{i}\right)=\sum_{i=m}^{\infty} a_{i}+\sum_{i=m}^{\infty} b_{i}
$$

Exercise 8.1.3

Given an infinite series $\sum_{i=m}^{\infty} a_{i}$ and an integer $k \geq m$, show that $\sum_{i=m}^{\infty} a_{i}$ converges if and only if $\sum_{i=k}^{\infty} a_{i}$ converges.
Proposition Suppose $\sum_{i=m}^{\infty} a_{i}$ converges. Then $\lim _{n \rightarrow \infty} a_{n}=0$.
Proof Let $s_{n}=\sum_{i=m}^{n} a_{i}$ and $s=\lim _{n \rightarrow \infty} s_{n}$. Since $a_{n}=s_{n}-s_{n-1}$, we have

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty}\left(s_{n}-s_{n-1}\right)=\lim _{n \rightarrow \infty} s_{n}-\lim _{n \rightarrow \infty} s_{n-1}=s-s=0
$$

Exercise 8.1.4

Let $s=\sum_{i=0}^{\infty}(-1)^{n}$. Note that

$$
s=\sum_{n=0}^{\infty}(-1)^{n}=1-\sum_{n=0}^{\infty}(-1)^{n}=1-s,
$$

from which it follows that $s=\frac{1}{2}$. Is this correct?

Exercise 8.1.5

Show that for any real number $x \neq 1$,

$$
s_{n}=\sum_{i=0}^{n} x^{i}=\frac{1-x^{n+1}}{1-x}
$$

(Hint: Note that $x^{n+1}=s_{n+1}-s_{n}=1+x s_{n}-s_{n}$.)
Proposition For any real number x with $|x|<1$,

$$
\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}
$$

Proof If $s_{n}=\sum_{i=0}^{n} x^{i}$, then, by the previous exercise,

$$
s_{n}=\frac{1-x^{n+1}}{1-x}
$$

Hence

$$
\sum_{n=0}^{\infty} x^{n}=\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty} \frac{1-x^{n+1}}{1-x}=\frac{1}{1-x}
$$

8.2 Comparison tests

The following two propositions are together referred to as the comparison test.
Proposition Suppose $\sum_{i=m}^{\infty} a_{i}$ and $\sum_{i=k}^{\infty} b_{i}$ are infinite series for which there exists an integer N such that $0 \leq a_{i} \leq b_{i}$ whenever $i \geq N$. If $\sum_{i=k}^{\infty} b_{i}$ converges, then $\sum_{i=m}^{\infty} a_{i}$ converges.
Proof We need only show that $\sum_{i=N}^{\infty} a_{i}$ converges. Let s_{n} be the nth partial sum of $\sum_{i=N}^{\infty} a_{i}$ and let t_{n} be the nth partial sum of $\sum_{i=N}^{\infty} b_{i}$. Now

$$
s_{n+1}-s_{n}=a_{n+1} \geq 0
$$

for every $n \geq N$, so $\left\{s_{n}\right\}_{n=N}^{\infty}$ is a nondecreasing sequence. Moreover,

$$
s_{n} \leq t_{n} \leq \sum_{i=N}^{\infty} b_{i}<+\infty
$$

for every $n \geq N$. Thus $\left\{s_{n}\right\}_{n=N}^{\infty}$ is a nondecreasing, bounded sequence, and so converges. Proposition Suppose $\sum_{i=m}^{\infty} a_{i}$ and $\sum_{i=k}^{\infty} b_{i}$ are infinite series for which there exists an integer N such that $0 \leq a_{i} \leq b_{i}$ whenever $i \geq N$. If $\sum_{i=k}^{\infty} a_{i}$ diverges, then $\sum_{i=m}^{\infty} b_{i}$ diverges.

Proof Again, we need only show that $\sum_{i=N}^{\infty} b_{i}$ diverges. Let s_{n} be the nth partial sum of $\sum_{i=N}^{\infty} a_{i}$ and let t_{n} be the nth partial sum of $\sum_{i=N}^{\infty} b_{i}$. Now $\left\{s_{n}\right\}_{n=N}^{\infty}$ is a nondecreasing sequence which diverges, and so we must have $\lim _{n \rightarrow \infty} s_{n}=+\infty$. Thus given any real number M there exists an integer L such that

$$
M<s_{n} \leq t_{n}
$$

whenever $n>L$. Hence $\lim _{n \rightarrow \infty} t_{n}=+\infty$ and $\sum_{i=m}^{\infty} b_{i}$ diverges.
Example Consider the infinite series

$$
\sum_{n=0}^{\infty} \frac{1}{n!}=1+1+\frac{1}{2}+\frac{1}{3!}+\frac{1}{4!}+\cdots
$$

Now for $n=1,2,3, \ldots$, we have

$$
0<\frac{1}{n!} \leq \frac{1}{2^{n-1}}
$$

Since $\sum_{n=1}^{\infty} \frac{1}{2^{n-1}}$ converges, it follows that $\sum_{n=0}^{\infty} \frac{1}{n!}$ converges. Moreover,

$$
2<\sum_{n=0}^{\infty} \frac{1}{n!}<1+\sum_{n=1}^{\infty} \frac{1}{2^{n-1}}=1+\frac{1}{1-\frac{1}{2}}=3
$$

We let $e=\sum_{n=0}^{\infty} \frac{1}{n!}$.
Proposition $\quad e \notin \mathbb{Q}$.
Proof Suppose $e=\frac{p}{q}$ where $p, q \in \mathbb{Z}^{+}$. Let

$$
a=q!\left(e-\sum_{i=0}^{q} \frac{1}{n!}\right)
$$

Then a is an integer since $q!e=(q-1)!p$ and $n!$ divides $q!$ when $n \leq q$. At the same time

$$
\begin{aligned}
0<a & =q!\left(\sum_{n=0}^{\infty} \frac{1}{n!}-\sum_{i=0}^{q} \frac{1}{n!}\right) \\
& =q!\sum_{n=q+1}^{\infty} \frac{1}{n!} \\
& =\left(\frac{1}{q+1}+\frac{1}{(q+1)(q+2)}+\frac{1}{(q+1)(q+2)(q+3)}+\cdots\right) \\
& =\frac{1}{q+1}\left(1+\frac{1}{q+2}+\frac{1}{(q+2)(q+3)}+\cdots\right) \\
& <\frac{1}{q+1}\left(1+\frac{1}{q+1}+\frac{1}{(q+1)^{2}}+\cdots\right) \\
& =\frac{1}{q+1} \sum_{n=0}^{\infty} \frac{1}{(q+1)^{n}} \\
& =\frac{1}{q+1}\left(\frac{1}{1-\frac{1}{q+1}}\right)=\frac{1}{q} .
\end{aligned}
$$

Since this is impossible, we conclude that no such integers p and q exist.
Definition We call a real number which is not a rational number an irrational number. Proposition Suppose $\sum_{i=m}^{\infty} a_{i}$ and $\sum_{i=k}^{\infty} b_{i}$ are infinite series for which there exists an integer N and a real number $M>0$ such that $0 \leq a_{i} \leq M b_{i}$ whenever $i \geq N$. If $\sum_{i=k}^{\infty} b_{i}$ converges, then $\sum_{i=m}^{\infty} a_{i}$ converges.
Proof Since $\sum_{i=k}^{\infty} M b_{i}$ converges whenever $\sum_{i=k}^{\infty} b_{i}$ does, the result follows from the comparison test.

Exercise 8.2.1

Suppose $\sum_{i=m}^{\infty} a_{i}$ diverges. Show that $\sum_{i=m}^{\infty} \beta a_{i}$ diverges for any real number $\beta \neq 0$.
Proposition Suppose $\sum_{i=m}^{\infty} a_{i}$ and $\sum_{i=k}^{\infty} b_{i}$ are infinite series for which there exists an integer N and a real number $M>0$ such that $0 \leq a_{i} \leq M b_{i}$ whenever $i \geq N$. If $\sum_{i=m}^{\infty} a_{i}$ diverges, then $\sum_{i=k}^{\infty} b_{i}$ diverges.
Proof By the comparison test, $\sum_{i=m}^{\infty} M b_{i}$ diverges. Hence, by the previous exercise, $\sum_{i=m}^{\infty} b_{i}$ also diverges.

The results of the next two exercises, which are direct consequences of the last two propositions, are together known as the limit comparison test.
Exercise 8.2.2
Suppose $\sum_{i=m}^{\infty} a_{i}$ and $\sum_{i=m}^{\infty} b_{i}$ are infinite series for which $a_{i} \geq 0$ and $b_{i}>0$ for all $i \geq m$. Show that if $\sum_{i=m}^{\infty} b_{i}$ converges and

$$
\lim _{i \rightarrow \infty} \frac{a_{i}}{b_{i}}<+\infty
$$

then $\sum_{i=m}^{\infty} a_{i}$ converges.

Exercise 8.2.3

Suppose $\sum_{i=m}^{\infty} a_{i}$ and $\sum_{i=m}^{\infty} b_{i}$ are infinite series for which $a_{i} \geq 0$ and $b_{i}>0$ for all $i \geq m$. Show that if $\sum_{i=m}^{\infty} a_{i}$ diverges and

$$
\lim _{i \rightarrow \infty} \frac{a_{i}}{b_{i}}<+\infty
$$

then $\sum_{i=m}^{\infty} b_{i}$ diverges.

Exercise 8.2.4

Show that

$$
\sum_{n=0}^{\infty} \frac{1}{n 2^{n}}
$$

converges.

Exercise 8.2.5

Show that

$$
\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

converges for any real number $x \geq 0$.

