Lecture 8: Infinite Series

8.1 Infinite series

Definition Given a sequence $\{a_i\}_{i=m}^{\infty}$, let $\{s_n\}_{n=m}^{\infty}$ be the sequence defined by

$$s_n = \sum_{i=m}^n a_i.$$

We call the sequence $\{s_n\}_{n=m}^{\infty}$ an *infinite series*. If $\{s_n\}_{n=m}^{\infty}$ converges, we call

$$s = \lim_{n \to \infty} s_n$$

the sum of the series. For any integer n, s_n is called a partial sum of the series.

We will use the notation

$$\sum_{i=m}^{\infty} a_i$$

to denote either $\{s_n\}_{n=m}^{\infty}$, the infinite series, or *s*, the sum of the infinite series. Of course, if $\{s_n\}_{n=m}^{\infty}$ diverges, then we say $\sum_{i=m}^{\infty} a_i$ diverges.

Exercise 8.1.1 Suppose $\sum_{i=m}^{\infty} a_i$ converges and $\beta \in \mathbb{R}$. Show that $\sum_{i=m}^{\infty} \beta a_i$ also converges and

$$\sum_{i=m}^{\infty} \beta a_i = \beta \sum_{i=m}^{\infty} a_i.$$

Exercise 8.1.2 Suppose both $\sum_{i=m}^{\infty} a_i$ and $\sum_{i=m}^{\infty} b_i$ converge. Show that $\sum_{i=m}^{\infty} (a_i + b_i)$ converges and

$$\sum_{i=m}^{\infty} (a_i + b_i) = \sum_{i=m}^{\infty} a_i + \sum_{i=m}^{\infty} b_i.$$

Exercise 8.1.3

Given an infinite series $\sum_{i=m}^{\infty} a_i$ and an integer $k \ge m$, show that $\sum_{i=m}^{\infty} a_i$ converges if and only if $\sum_{i=k}^{\infty} a_i$ converges.

Proposition Suppose $\sum_{i=m}^{\infty} a_i$ converges. Then $\lim_{n\to\infty} a_n = 0$. **Proof** Let $s_n = \sum_{i=m}^n a_i$ and $s = \lim_{n \to \infty} s_n$. Since $a_n = s_n - s_{n-1}$, we have

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} (s_n - s_{n-1}) = \lim_{n \to \infty} s_n - \lim_{n \to \infty} s_{n-1} = s - s = 0$$

Exercise 8.1.4 Let $s = \sum_{i=0}^{\infty} (-1)^n$. Note that

$$s = \sum_{n=0}^{\infty} (-1)^n = 1 - \sum_{n=0}^{\infty} (-1)^n = 1 - s,$$

from which it follows that $s = \frac{1}{2}$. Is this correct?

Exercise 8.1.5

Show that for any real number $x \neq 1$,

$$s_n = \sum_{i=0}^n x^i = \frac{1 - x^{n+1}}{1 - x}$$

(Hint: Note that $x^{n+1} = s_{n+1} - s_n = 1 + xs_n - s_n$.)

Proposition For any real number x with |x| < 1,

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$$

Proof If $s_n = \sum_{i=0}^n x^i$, then, by the previous exercise,

$$s_n = \frac{1 - x^{n+1}}{1 - x}$$

Hence

$$\sum_{n=0}^{\infty} x^n = \lim_{n \to \infty} s_n = \lim_{n \to \infty} \frac{1 - x^{n+1}}{1 - x} = \frac{1}{1 - x}$$

8.2 Comparison tests

The following two propositions are together referred to as the *comparison test*.

Proposition Suppose $\sum_{i=m}^{\infty} a_i$ and $\sum_{i=k}^{\infty} b_i$ are infinite series for which there exists an integer N such that $0 \le a_i \le b_i$ whenever $i \ge N$. If $\sum_{i=k}^{\infty} b_i$ converges, then $\sum_{i=m}^{\infty} a_i$ converges.

Proof We need only show that $\sum_{i=N}^{\infty} a_i$ converges. Let s_n be the *n*th partial sum of $\sum_{i=N}^{\infty} a_i$ and let t_n be the *n*th partial sum of $\sum_{i=N}^{\infty} b_i$. Now

$$s_{n+1} - s_n = a_{n+1} \ge 0$$

for every $n \ge N$, so $\{s_n\}_{n=N}^{\infty}$ is a nondecreasing sequence. Moreover,

$$s_n \le t_n \le \sum_{i=N}^{\infty} b_i < +\infty$$

for every $n \ge N$. Thus $\{s_n\}_{n=N}^{\infty}$ is a nondecreasing, bounded sequence, and so converges.

Proposition Suppose $\sum_{i=m}^{\infty} a_i$ and $\sum_{i=k}^{\infty} b_i$ are infinite series for which there exists an integer N such that $0 \le a_i \le b_i$ whenever $i \ge N$. If $\sum_{i=k}^{\infty} a_i$ diverges, then $\sum_{i=m}^{\infty} b_i$ diverges.

Proof Again, we need only show that $\sum_{i=N}^{\infty} b_i$ diverges. Let s_n be the *n*th partial sum of $\sum_{i=N}^{\infty} a_i$ and let t_n be the *n*th partial sum of $\sum_{i=N}^{\infty} b_i$. Now $\{s_n\}_{n=N}^{\infty}$ is a nondecreasing sequence which diverges, and so we must have $\lim_{n\to\infty} s_n = +\infty$. Thus given any real number M there exists an integer L such that

$$M < s_n \le t_n$$

whenever n > L. Hence $\lim_{n \to \infty} t_n = +\infty$ and $\sum_{i=m}^{\infty} b_i$ diverges.

Example Consider the infinite series

$$\sum_{n=0}^{\infty} \frac{1}{n!} = 1 + 1 + \frac{1}{2} + \frac{1}{3!} + \frac{1}{4!} + \cdots$$

Now for n = 1, 2, 3, ..., we have

$$0 < \frac{1}{n!} \le \frac{1}{2^{n-1}}.$$

Since $\sum_{n=1}^{\infty} \frac{1}{2^{n-1}}$ converges, it follows that $\sum_{n=0}^{\infty} \frac{1}{n!}$ converges. Moreover,

$$2 < \sum_{n=0}^{\infty} \frac{1}{n!} < 1 + \sum_{n=1}^{\infty} \frac{1}{2^{n-1}} = 1 + \frac{1}{1 - \frac{1}{2}} = 3.$$

We let $e = \sum_{n=0}^{\infty} \frac{1}{n!}$.

Proposition $e \notin \mathbb{Q}$.

Proof Suppose $e = \frac{p}{q}$ where $p, q \in \mathbb{Z}^+$. Let

$$a = q! \left(e - \sum_{i=0}^{q} \frac{1}{n!} \right).$$

Then a is an integer since q!e = (q-1)!p and n! divides q! when $n \leq q$. At the same time

$$\begin{aligned} 0 < a &= q! \left(\sum_{n=0}^{\infty} \frac{1}{n!} - \sum_{i=0}^{q} \frac{1}{n!} \right) \\ &= q! \sum_{n=q+1}^{\infty} \frac{1}{n!} \\ &= \left(\frac{1}{q+1} + \frac{1}{(q+1)(q+2)} + \frac{1}{(q+1)(q+2)(q+3)} + \cdots \right) \\ &= \frac{1}{q+1} \left(1 + \frac{1}{q+2} + \frac{1}{(q+2)(q+3)} + \cdots \right) \\ &< \frac{1}{q+1} \left(1 + \frac{1}{q+1} + \frac{1}{(q+1)^2} + \cdots \right) \\ &= \frac{1}{q+1} \sum_{n=0}^{\infty} \frac{1}{(q+1)^n} \\ &= \frac{1}{q+1} \left(\frac{1}{1 - \frac{1}{q+1}} \right) = \frac{1}{q}. \end{aligned}$$

Since this is impossible, we conclude that no such integers p and q exist.

Definition We call a real number which is not a rational number an *irrational* number.

Proposition Suppose $\sum_{i=m}^{\infty} a_i$ and $\sum_{i=k}^{\infty} b_i$ are infinite series for which there exists an integer N and a real number M > 0 such that $0 \le a_i \le Mb_i$ whenever $i \ge N$. If $\sum_{i=k}^{\infty} b_i$ converges, then $\sum_{i=m}^{\infty} a_i$ converges.

Proof Since $\sum_{i=k}^{\infty} Mb_i$ converges whenever $\sum_{i=k}^{\infty} b_i$ does, the result follows from the comparison test.

Exercise 8.2.1

Suppose $\sum_{i=m}^{\infty} a_i$ diverges. Show that $\sum_{i=m}^{\infty} \beta a_i$ diverges for any real number $\beta \neq 0$.

Proposition Suppose $\sum_{i=m}^{\infty} a_i$ and $\sum_{i=k}^{\infty} b_i$ are infinite series for which there exists an integer N and a real number M > 0 such that $0 \le a_i \le Mb_i$ whenever $i \ge N$. If $\sum_{i=m}^{\infty} a_i$ diverges, then $\sum_{i=k}^{\infty} b_i$ diverges.

Proof By the comparison test, $\sum_{i=m}^{\infty} Mb_i$ diverges. Hence, by the previous exercise, $\sum_{i=m}^{\infty} b_i$ also diverges.

The results of the next two exercises, which are direct consequences of the last two propositions, are together known as the *limit comparison test*.

Exercise 8.2.2

Suppose $\sum_{i=m}^{\infty} a_i$ and $\sum_{i=m}^{\infty} b_i$ are infinite series for which $a_i \ge 0$ and $b_i > 0$ for all $i \ge m$. Show that if $\sum_{i=m}^{\infty} b_i$ converges and

$$\lim_{i \to \infty} \frac{a_i}{b_i} < +\infty,$$

then $\sum_{i=m}^{\infty} a_i$ converges.

Exercise 8.2.3 Suppose $\sum_{i=m}^{\infty} a_i$ and $\sum_{i=m}^{\infty} b_i$ are infinite series for which $a_i \ge 0$ and $b_i > 0$ for all $i \ge m$. Show that if $\sum_{i=m}^{\infty} a_i$ diverges and

$$\lim_{i \to \infty} \frac{a_i}{b_i} < +\infty,$$

then $\sum_{i=m}^{\infty} b_i$ diverges.

Exercise 8.2.4 Show that

$$\sum_{n=0}^{\infty} \frac{1}{n2^n}$$

converges.

Exercise 8.2.5 Show that

$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$

converges for any real number $x \ge 0$.