Lecture 7: More on Sequences

7.1 Basic theorems about sequences

Proposition Suppose $\left\{x_{i}\right\}_{i \in I}$ is a convergent sequence in \mathbb{R} and $L=\lim _{i \rightarrow \infty} x_{i}$. Then for any real number α, the sequence $\left\{\alpha x_{i}\right\}_{i \in I}$ converges and

$$
\lim _{i \rightarrow \infty} \alpha x_{i}=\alpha L
$$

Proof If $\alpha=0$, then $\left\{\alpha x_{i}\right\}_{i \in I}$ clearly converges to 0 . So assume $\alpha \neq 0$. Given $\epsilon>0$, choose an integer N such that

$$
\left|a_{i}-L\right|<\frac{\epsilon}{|\alpha|}
$$

whenever $i>N$. Then for any $i>N$ we have

$$
\left|\alpha x_{i}-\alpha L\right|=|\alpha|\left|x_{i}-L\right|<|\alpha| \frac{\epsilon}{|\alpha|}=\epsilon
$$

Thus $\lim _{i \rightarrow \infty} \alpha x_{i}=\alpha L$.
Proposition Suppose $\left\{x_{i}\right\}_{i \in I}$ and $\left\{y_{i}\right\}_{i \in I}$ are convergent sequences in \mathbb{R} with $L=$ $\lim _{i \rightarrow \infty} x_{i}$ and $M=\lim _{i \rightarrow \infty} y_{i}$. Then the sequence $\left\{x_{i}+y_{i}\right\}_{i \in I}$ converges and

$$
\lim _{i \rightarrow \infty}\left(x_{i}+y_{i}\right)=L+M
$$

Exercise 7.1.1

Prove the previous proposition.
Proposition Suppose $\left\{x_{i}\right\}_{i \in I}$ and $\left\{y_{i}\right\}_{i \in I}$ are convergent sequences in \mathbb{R} with $L=$ $\lim _{i \rightarrow \infty} x_{i}$ and $M=\lim _{i \rightarrow \infty} y_{i}$. Then the sequence $\left\{x_{i} y_{i}\right\}_{i \in I}$ converges and

$$
\lim _{i \rightarrow \infty} x_{i} y_{i}=L M
$$

Exercise 7.1.2

Prove the previous proposition
Proposition Suppose $\left\{x_{i}\right\}_{i \in I}$ and $\left\{y_{i}\right\}_{i \in I}$ are convergent sequences in \mathbb{R} with $L=$ $\lim _{i \rightarrow \infty} x_{i}$ and $M=\lim _{i \rightarrow \infty} y_{i}$. If $M \neq 0$, then the sequence $\left\{\frac{x_{i}}{y_{i}}\right\}_{i \in I}$ converges and

$$
\lim _{i \rightarrow \infty} \frac{x_{i}}{y_{i}}=\frac{L}{M}
$$

Proof Since $M \neq 0$ and $M=\lim _{i \rightarrow \infty} y_{i}$, we may choose an integer N such that

$$
\left|y_{i}\right|>\frac{|M|}{2}
$$

whenever $i>N$. Let B be an upper bound for $\left\{\left|x_{i}\right|: i \in I\right\} \cup\left\{\left|y_{i}\right|: i \in I\right\}$. Moreover, given any $\epsilon>0$, we may choose an integer P such that

$$
\left|x_{i}-L\right|<\frac{M^{2} \epsilon}{4 B}
$$

and

$$
\left|y_{i}-M\right|<\frac{M^{2} \epsilon}{4 B}
$$

whenever $i>P$. Let K be the larger of N and P. Then, for any $i>K$, we have

$$
\begin{aligned}
\left|\frac{x_{i}}{y_{i}}-\frac{L}{M}\right| & =\frac{\left|x_{i} M-y_{i} L\right|}{\left|y_{i} M\right|} \\
& =\frac{\left|x_{i} M-x_{i} y_{i}+x_{i} y_{i}-y_{i} L\right|}{\left|y_{i} M\right|} \\
& \leq \frac{\left|x_{i}\right|\left|M-y_{i}\right|+\left|y_{i}\right|\left|x_{i}-L\right|}{\left|y_{i} M\right|} \\
& <\frac{B \frac{M^{2} \epsilon}{4 B}+B \frac{M^{2} \epsilon}{4 B}}{\frac{M^{2}}{2}} \\
& =\epsilon .
\end{aligned}
$$

Thus

$$
\lim _{i \rightarrow \infty} \frac{x_{i}}{y_{i}}=\frac{L}{M} .
$$

Exercise 7.1.3

(a) Show that $\lim _{n \rightarrow \infty} \frac{1}{n}=0$.
(b) Show that

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{2}}=0
$$

by (1) using the definition of limit directly and then (2) using previous results.

Exercise 7.1.4

Show that for any positive integer k,

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{k}}=0
$$

Example We may combine the properties of this section to compute

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{5 n^{3}+3 n-6}{2 n^{3}+2 n^{2}-7} & =\lim _{n \rightarrow \infty} \frac{5+\frac{3}{n^{2}}-\frac{6}{n^{3}}}{2+\frac{2}{n}-\frac{7}{n^{3}}} \\
& =\frac{\lim _{n \rightarrow \infty} 5+3 \lim _{n \rightarrow \infty} \frac{1}{n^{2}}-6 \lim _{n \rightarrow \infty} \frac{1}{n^{3}}}{\lim _{n \rightarrow \infty} 2+2 \lim _{n \rightarrow \infty} \frac{1}{n}-7 \lim _{n \rightarrow \infty} \frac{1}{n^{3}}} \\
& =\frac{5+0+0}{2+0+0}=\frac{5}{2}
\end{aligned}
$$

Exercise 7.1.5

Evaluate

$$
\lim _{n \rightarrow \infty} \frac{3 n^{5}+8 n^{3}-6 n}{8 n^{5}+2 n^{4}-31}
$$

carefully showing each step.
Proposition Suppose $\left\{x_{i}\right\}_{i \in I}$ is a convergent sequence of nonegative real numbers with $L=\lim _{i \rightarrow \infty} x_{i}$. Then the sequence $\left\{\sqrt{x_{i}}\right\}_{i \in I}$ converges and

$$
\lim _{i \rightarrow \infty} \sqrt{x_{i}}=\sqrt{L}
$$

Proof Let $\epsilon>0$ be given. Suppose $L>0$ and note that

$$
\left|x_{i}-L\right|=\left|\sqrt{x_{i}}-\sqrt{L}\right|\left|\sqrt{x_{i}}+\sqrt{L}\right|
$$

implies that

$$
\left|\sqrt{x_{i}}-\sqrt{L}\right|=\frac{\left|x_{i}-L\right|}{\left|\sqrt{x_{i}}+\sqrt{L}\right|}
$$

for any $i \in I$. Choose an integer N such that

$$
\left|x_{i}-L\right|<\sqrt{L} \epsilon
$$

whenever $i>N$. Then, for any $i>N$,

$$
\left|\sqrt{x_{i}}-\sqrt{L}\right|=\frac{\left|x_{i}-L\right|}{\left|\sqrt{x_{i}}+\sqrt{L}\right|}<\frac{\sqrt{L} \epsilon}{\sqrt{L}}=\epsilon
$$

Hence $\lim _{i \rightarrow \infty} \sqrt{x_{i}}=\sqrt{L}$.
If $L=0, \lim _{i \rightarrow \infty} x_{i}=0$, so we may choose an integer N such that $\left|x_{i}\right|<\epsilon^{2}$ for all $i>N$. Then

$$
\left|\sqrt{x_{i}}\right|<\epsilon
$$

whenever $i>N$, so $\lim _{i \rightarrow \infty} \sqrt{x_{i}}=0$.

Exercise 7.1.6

Evaluate

$$
\lim _{n \rightarrow \infty} \frac{\sqrt{3 n^{2}+1}}{5 n+6}
$$

carefully showing each step.
Exercise 7.1.7
Given real numbers $r>0$ and α, show that (a) $\alpha r<r$ if $0<\alpha<1$ and (b) $r<\alpha r$ if $\alpha>1$.

Proposition If $x \in \mathbb{R}$ and $|x| \leq 1$, then

$$
\lim _{n \rightarrow \infty} x^{n}=0
$$

Proof We will first assume $x \geq 0$. Then the sequence $\left\{x^{n}\right\}_{n=1}^{\infty}$ is nonincreasing and bounded below by 0 . Hence the sequence converges. Let $L=\lim _{n \rightarrow \infty} x^{n}$. Then

$$
L=\lim _{n \rightarrow \infty} x^{n}=x \lim _{n \rightarrow \infty} x^{n-1}=x L,
$$

from which it follows that $L(1-x)=0$. Since $1-x>0$, we must have $L=0$. The result for $x<0$ follows from the next exercise.

Exercise 7.1.8

Show that $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$ if and only if $\lim _{n \rightarrow \infty} a_{n}=0$.

7.2 Subsequences

Definition Given a sequence $\left\{x_{i}\right\}_{i=m}^{\infty}$, suppose $\left\{n_{k}\right\}_{k=1}^{\infty}$ is an increasing sequence of integers with

$$
m \leq n_{1}<n_{2}<n_{3}<\cdots .
$$

Then the sequence $\left\{x_{n_{k}}\right\}_{k=1}^{\infty}$ is called a subsequence of $\left\{x_{i}\right\}_{i=m}^{\infty}$.
Example The sequence $\left\{x_{2 k}\right\}_{k=1}^{\infty}$ is a subsequence of the sequence $\left\{x_{i}\right\}_{i=1}^{\infty}$. For example, $\left\{\frac{1}{2 i}\right\}_{i=1}^{\infty}$ is a subsequence of $\left\{\frac{1}{i}\right\}_{i=1}^{\infty}$.

Exercise 7.2.1

Suppose $\left\{x_{i}\right\}_{i=m}^{\infty}$ converges with $\lim _{i \rightarrow \infty} x_{i}=L$. Show that every subsequence $\left\{x_{n_{k}}\right\}_{k=1}^{\infty}$ of $\left\{x_{i}\right\}_{i=m}^{\infty}$ also converges and $\lim _{k \rightarrow \infty} x_{n_{k}}=L$.

Exercise 7.2.2

Suppose $\left\{x_{i}\right\}_{i=m}^{\infty}$ diverges to $+\infty$. Show that every subsequence $\left\{x_{n_{k}}\right\}_{k=1}^{\infty}$ of $\left\{x_{i}\right\}_{i=m}^{\infty}$ also diverges to $+\infty$.
Exercise 7.2.3
Suppose $\left\{x_{i}\right\}_{i=m}^{\infty}$ diverges to $-\infty$. Show that every subsequence $\left\{x_{n_{k}}\right\}_{k=1}^{\infty}$ of $\left\{x_{i}\right\}_{i=m}^{\infty}$ also diverges to $-\infty$.
Definition Given a sequence $\left\{x_{i}\right\}_{i=m}^{\infty}$, any extended real number λ which is the limit of a subsequence of $\left\{x_{i}\right\}_{i=m}^{\infty}$ is called a subsequential limit of $\left\{x_{i}\right\}_{i=m}^{\infty}$.
Example -1 and 1 are both subsequential limits of $\left\{(-1)^{i}\right\}_{i=0}^{\infty}$.
Exercise 7.2.4
Suppose the sequence $\left\{x_{i}\right\}_{i=m}^{\infty}$ is not bounded. Show that either $-\infty$ or $+\infty$ is a subsequential limit of $\left\{x_{i}\right\}_{i=m}^{\infty}$.
Proposition Suppose Λ is the set of all subsequential limits of the sequence $\left\{x_{i}\right\}_{i=m}^{\infty}$. Then $\Lambda \neq \emptyset$.

Proof By the previous exercise, the proposition is true if $\left\{x_{i}\right\}_{i=m}^{\infty}$ is not bounded. So suppose $\left\{x_{i}\right\}_{i=m}^{\infty}$ is bounded and choose real numbers a and b such that $a \leq x_{i}$ and $b \geq x_{i}$ for all $i \geq m$. Construct sequences $\left\{a_{i}\right\}_{i=1}^{\infty}$ and $\left\{b_{i}\right\}_{i=1}^{\infty}$ as follows: Let $a_{1}=a$ and $b_{1}=b$. For $i \geq 1$, let

$$
c=\frac{a_{i-1}+b_{i-1}}{2} .
$$

If there exists an integer N such that $a_{i-1} \leq x_{j} \leq c$ for all $j>N$, let $a_{i}=a_{i-1}$ and $b_{i}=c$; otherwise, let $a_{i}=c$ and $b_{i}=b_{i-1}$. Let $n_{1}=m$ and, for $k=2,3,4, \ldots$, let n_{k} be the smallest integer for which $n_{k}>n_{k-1}$ and $a_{k} \leq x_{n_{k}} \leq b_{k}$. Then $\left\{x_{n_{k}}\right\}_{k=1}^{\infty}$ is a Cauchy sequence which is a subsequence of $\left\{x_{i}\right\}_{i=m}^{\infty}$. Thus $\left\{x_{n_{k}}\right\}_{k=1}^{\infty}$ converges and $\Lambda \neq \emptyset$.

Exercise 7.2.5

Suppose $A \subset \mathbb{R}$ and $B \subset \mathbb{R}$ with $a \leq b$ for every $a \in A$ and $b \in B$. Show that $\sup A \leq \inf B$.
Proposition Let Λ be the set of subsequential limits of a sequence $\left\{x_{i}\right\}_{i=m}^{\infty}$. Then

$$
\limsup _{i \rightarrow \infty} x_{i}=\sup \Lambda .
$$

Proof Let $s=\sup A$ and, for $i \geq m, u_{i}=\sup \left\{x_{j}: j \geq i\right\}$. Now since $x_{j} \leq u_{i}$ for all $j \geq i$, it follows that $\lambda \leq u_{i}$ for every $\lambda \in \Lambda$ and $i \geq m$. Hence, from the previous exercise, $s \leq \inf \left\{u_{i}: i \geq m\right\}=\lim \sup _{i \rightarrow \infty} x_{i}$.

Now suppose $s<\limsup _{i \rightarrow \infty} x_{i}$. Then there exists a real number t such that $s<$ $t<\lim \sup _{i \rightarrow \infty} x_{i}$. In particular, $t<u_{i}$ for every $i \geq m$. Let n_{1} be the smallest integer for which $n_{k} \geq m$ and $x_{n_{k}}>t$. For $k=2,3,4, \ldots$, let n_{k} be the smallest integer for which $n_{k}>n_{k-1}$ and $x_{n_{k}}>t$. Then $\left\{x_{n_{k}}\right\}_{k=1}^{\infty}$ is a subsequence of $\left\{x_{i}\right\}_{i=m}^{\infty}$ which has a subsequential limit $\lambda \geq t$. Since λ is also then a subsequential limit of $\left\{x_{i}\right\}_{i=m}^{\infty}$, we have $\lambda \in \Lambda$ and $\lambda \geq t>s$, contradicting $s=\sup \Lambda$. Hence we must have $\lim \sup _{i \rightarrow \infty} x_{i}=\sup \Lambda$.

Exercise 7.2.6
Let Λ be the set of subsequential limits of a sequence $\left\{x_{i}\right\}_{i=m}^{\infty}$. Show that

$$
\liminf _{i \rightarrow \infty} x_{i}=\inf \Lambda .
$$

