Lecture 6: Sequences of Real Numbers

6.1 Limits of sequences

Definition Let {a;};e; be a sequence of real numbers. We say {a;}ics converges, and
has limst L, if for every real number € > 0 there exists an integer N such that

la; — L] < e

whenever ¢« > N. A sequence {a;};e; which does not converge is said to diverge.

Definition We say a sequence {«;}icr is nondecreasing if a;y1 > a; for every ¢ € I and
increasing if a;41 > a; for every 1 € I. We say a sequence {a;}icr is nonincreasing if
a;+1 < a; for every ¢ € I and decreasing if a;41 < a; for every 1 € 1.

Definition A set A C R is said to be bounded if there exists a real number M such that
la| < M for every a € A. A sequence {a; };er of real numbers is said to be bounded if there
exists a real number M such that |a;| < M for all ¢ € .

Theorem If {a;}ics is a nondecreasing, bounded sequence of real numbers, then {a; };er
converges.

Proof Since {a;}ics is bounded, the set of A = {a; : ¢« € I} has a supremum. Let
L = sup A. For any € > 0, there must exist N € I such that axy > L — € (or else L — ¢
would be an upper bound for A which is smaller than L). But then

L—e<anv<ag; <L <L+e

for all « > N, that is,
la; — L] < e

for all ¢ > N. Thus {a;}ier converges and

L= lim qa;.
1— 00

We conclude from the previous theorem that every nondecreasing sequence of real
numbers either has a limit or is not bounded, that is, is unbounded.
Exercise 6.1.1

Show that a nonincreasing, bounded sequence of real numbers must converge.

Definition Let {a;};es be a sequence of real numbers. If for every real number M there
exists an integer N such that

a; > M

whenever ¢ > N, then we say the sequence {q; };cr diverges to positive infinity, denoted by

lim a; = +oo.
11— 00
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Similarly, if for every real number M there exists an integer N such that
a; < M

whenever 1 > N, then we say the sequence {a;};c; diverges to negative infinity, denoted
by

lim a; = —o0.
1— 00

Exercise 6.1.2
Show that a nondecreasing sequence of real numbers either converges or diverges to positive
infinity.

Exercise 6.1.3
Show that a nonincreasing sequence of real numbers either converges or diverges to negative
infinity.

6.2 Extended real numbers

It is convenient to add the symbols 400 and —oco to the real numbers R. Although neither
+o00 nor —oo is a real number, we agree to the following operational conventions:

Given any real number r, —oo < r < 00.
For any real number r,

r+ (+o00) =r—(—o0) =71+ 00 = +o0,

r+(—o0)=r—(+00) =r—o00 = —00,
and
r _ " _,
400 —00
For any real number r > 0, r - (+00) = +00 and r - (—o0) = —oo. For any real number
r<0,r-(+00)=—00 and r - (—o0) = +o0.
If a; = —o0, 1 =1,2,3,..., then lim; , a; = —o0; if ¢; = 400, 1 = 1,2,3,..., then
lim; _yeo a; = +00.

Note that with the order relation defined in this manner, +o00 is an upper bound and
—o0 is a lower bound for any set A C R. Thus if A C R does not have a finite upper
bound, then sup A = +oo; similarly, if A C R does not have a finite lower bound, then
inf A = —cc.

When working with extended real numbers, we refer to the elements of R as finite real
numbers and the elements +o0o0 and —oo as infinite real numbers.

Exercise 6.2.1

Do the extended real numbers form a field?
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6.3 Limit superior and inferior

Definition Let {a;};er be a sequence of real numbers and, for each i € I, let u; =
sup{a; : j > 1}. If u; = 400 for every i € I, we let

limsup a; = +o0;
1 —00

otherwise, we let
limsupa; = inf{u; : 1 € I}.

1—00
In either case, we call limsup,,_, . a, the limit superior of the sequence {a;};e7.

Definition Let {a;};er be a sequence of real numbers and, for each ¢ € I, let [; = inf{a; :
j>1i}. If'l; = —oo for every i € I, we let

liminfa; = —oc;
1 —00

otherwise, we let
liminfa; = sup{l; : 1 € I'}.

1—> 00

In either case, we call liminf,, o a, the limit inferior of the sequence {a;}icr.

Exercise 6.3.1
Given a sequence {a;}iecr, define {u;}ier and {l;};er as in the previous two definitions.
Show that

limsupa; = lim u;
i—o0 des

and

liminfa; = lim /;.
1— 00 1— 00

Exercise 6.3.2

Find lim sup,_, _ a; and liminf,_, a; for the sequences {a;}:2, as defined below.

(a) ai = (-1’

(b) a; =1 ‘
(¢c) a; = 21_’
(d) a; = -

The following proposition is often called the squeeze theorem.

Proposition Suppose {a;}icr, {bi}jes, and {ci }rek are sequences of real numbers for
which there exists an integer N such that a; < ¢; < b; whenever 1 > N. If

lim a; = lim b;,
1— 00 1— 00
then

lim ¢; = lim ¢; = lim b;.
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Proof Let L =lim; o a; =lim;_ o b;. Suppose L is finite. Given € > 0, there exists an
integer M such that

€

i_L < =

i — L] < &

and .

b; — L -

DESIES

whenever 7 > M. Then

€ € €
i — b <la; — L L—b -+ - ==
jag — bil < Jas — L]+ L~ bl < S £ = &

whenever ¢ > M. Let K be the larger of N and M. Then

€ 3e
- = — <€

e = L < fei = bil 4+ b = L < Jai = byl + b = L < 5+ 7 = 5

whenever 7 > K. Thus lim; ,oc ¢; = L.
The result when L is infinite is a consequence of the next two exercises.

Exercise 6.3.3
Suppose {a;}ier and {ci }rex are sequences for which there exists an integer N such that
a; < ¢; whenever ¢ > N. Show that if lim; ., a; = +00, then lim;_, ¢; = +oc.

Exercise 6.3.4
Suppose {b;};c s and {ci}rex are sequences for which there exists an integer N such that
¢; < b; whenever ¢ > N. Show that if lim; .~ b; = —oco, then lim; ., ¢; = —o0.

Exercise 6.3.5
Suppose {a;}icr and {b;},cs are sequences of real numbers with a; < b; for all ¢ larger
than some integer N. Assuming both sequences converge, show that

lim a; < lim b;.
1— 00 1— 00

Exercise 6.3.6
Show that for any sequence {a;};er,

liminf a; <limsup a;.
i—00 1—00

Proposition Suppose {a;}icr is a sequence for which limsup, , _a; = liminf; o a;.
Then

lim a; = limsup a; = liminf a;.

Proof Let u; =supf{ag : k >} and l; =inf{a; : kK > ¢}. Then l; < a; < wu; forall i € 1.
Then

lim [; = liminfa; = limsupa; = lim u;,
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so the result follows from the squeeze theorem.

Exercise 6.3.7
Suppose u 1s a real number such that v > 0 and u < € for any real number ¢ > 0. Show
that v = 0.

Definition Suppose {a;}ics is a sequence in R. We call {q; };er a Cauchy sequence if for
every € > 0 there exists an integer N such that

la; —aj| < e

whenever both ¢« > N and 7 > N.

Theorem Suppose {a;};es is a Cauchy sequence in R. Then {¢; };e; converges to a limit
LeR

Proof Let u; = sup{ag : k > ¢} and [; = inf{a; : &k > ¢}. Given any e > 0, there exists

N € Z such that |a; — aj| < e for all 1,5 > N. Thus, for all 1,5 > N, a; < aj + €, and so
a; <inf{a;+e:3>1} =1 +e€

for all ¢ > N. Since {l;};es is a nondecreasing sequence,

a; <sup{l; + e:1 €I} =liminfa; + ¢

1— 00

for all 2 > N. Hence
u; =supf{ag : k> 1} <liminfa; + €

1— 00
for all 2 > N. Thus
limsupa; = inf{u; : 2 € I'} <liminfa; + €.
1—00 =00

Since liminf; , . a; <limsup,_, . a;, it follows that

|limsup a; — liminf a;| <e.
1—00 i—00

Since this is true for every € > 0, we have limsup,_, . a; = liminf; o a;, and so {a; }ier
converges by the previous proposition.
As a consequence of the previous theorem, we say that R is a complete metric space.

Exercise 6.3.8
Suppose A C R, A # (), and s = sup A. Show that there exists a sequence {a;}2, with
a; € A such that lim;_, o a; = s.

Exercise 6.3.9
Given a real number x > 0, show that there exists a real number s > 0 such that s? = z.

We denote the number s in the previous exercise /.



