Lecture 3: Sequences of Rational Numbers

3.1 Rational numbers: upper and lower bounds

Definition Let $A \subset \mathbb{Q}$. If $s \in \mathbb{Q}$ is such that $s \geq a$ for every $a \in A$, then we call s an upper bound for A. If s is an upper bound for A with the property that $s \leq t$ whenever t is an upper bound for A, then we call s the supremum, or least upper bound, of A, denoted $s=\sup A$. Similarly, if $r \in \mathbb{Q}$ is such that $r \leq a$ for every $a \in A$, then we call r a lower bound for A. If r is a lower bound for A with the property that $r \geq t$ whenever t is a lower bound for A, then we call r the infimum, or greatest lower bound, of A, denoted $r=\inf A$.

Exercise 3.1.1

Show that the supremum of a set $A \subset \mathbb{Q}$, if it exists, is unique, and thus justify the use of the definite article in the previous definition.

A set which does not have an upper bound will not, a fortiori, have a supremum. For example, \mathbb{Q} itself does not have an upper bound. Moreover, even sets which have upper bounds need not have a supremum. Consider the set $A=\left\{a: a \in \mathbb{Q}, a^{2}<2\right\}$. Then, for example, 4 is an upper bound for A. Now suppose $s \in \mathbb{Q}$ is the supremum of A. Suppose $s^{2}<2$ and let $\epsilon=2-s^{2}$. By the archimedean property of \mathbb{Q}, we may choose $n \in \mathbb{Z}^{+}$such that

$$
\frac{2 s+1}{n}<\epsilon,
$$

from which it follows that

$$
\frac{2 s}{n}+\frac{1}{n^{2}}=\frac{2 s+\frac{1}{n}}{n} \leq \frac{2 s+1}{n}<\epsilon .
$$

Hence

$$
\left(s+\frac{1}{n}\right)^{2}=s^{2}+\frac{2 s}{n}+\frac{1}{n^{2}}<s^{2}+\epsilon=2,
$$

which implies that $s+\frac{1}{n} \in A$. Since $s<s+\frac{1}{n}$, this contradicts the assumption that s is an upper bound for A. So now suppose $s^{2}>2$. Again let $n \in \mathbb{Z}^{+}$and note that

$$
\left(s-\frac{1}{n}\right)^{2}=s^{2}-\frac{2 s}{n}+\frac{1}{n^{2}} .
$$

If we let $\epsilon=s^{2}-2$, then we may choose $n \in \mathbb{Z}^{+}$so that

$$
\frac{2 s}{n}<\epsilon .
$$

It follows that

$$
\left(s-\frac{1}{n}\right)^{2}>s^{2}-\epsilon+\frac{1}{n^{2}}=2+\frac{1}{n^{2}}>2 .
$$

Thus $s-\frac{1}{n}$ is an upper bound for A and $s-\frac{1}{n}<s$, contradicting the assumption that $s=\sup A$. Thus we must have $s^{2}=2$. However, this is impossible in light of the following proposition. Hence we must conclude that A does not have a supremum.

Proposition There does not exist a rational number s with the property that $s^{2}=2$.
Proof Suppose there exists $s \in \mathbb{Q}$ such that $s^{2}=2$. Choose $a, b \in \mathbb{Z}^{+}$so that a and b are relatively prime (that is, they have no factor other than 1 in common) and $s=\frac{a}{b}$. Then

$$
\frac{a^{2}}{b^{2}}=2,
$$

so $a^{2}=2 b^{2}$. Thus a^{2}, and hence a, is an even integer. So there exists $c \in \mathbb{Z}^{+}$such that $a=2 c$. Hence

$$
a^{2}=4 c^{2}=2 b^{2}
$$

from which it follows that $b^{2}=2 c$, and so b is also an even integer. But this contradicts the assumption that a and b are relatively prime.
Exercise 3.1.2
Show that there does not exist a rational number s with the property that $s^{2}=3$.
Exercise 3.1.3
Show that there does not exist a rational number s with the property that $s^{2}=6$.

Exercise 3.1.4

As above, let $A=\left\{a: a \in \mathbb{Q}, a^{2}<2\right\}$.
(a) Show that if $b \in A$ and $0<a<b$, then $a \in A$.
(b) Show that if $a>0, a \notin A$, and $b>a$, then $b \notin A$.

3.2 Sequences of rational Numbers

Definition Suppose $n \in \mathbb{Z}, I=\{n, n+1, n+2, \ldots\}$, and A is a set. A function $\varphi: I \rightarrow A$ is called a sequence with values in A.

Frequently, we will define a sequence φ by specifying its values with notation such as, for example, $\{\varphi(i)\}_{i \in I}$, or $\{\varphi(i)\}_{i=n}^{\infty}$. Thus, for example, $\left\{i^{2}\right\}_{i=1}^{\infty}$ denotes the sequence $\varphi: \mathbb{Z}^{+} \rightarrow \mathbb{Z}$ defined by $\varphi(i)=i^{2}$. Moreover, it is customary to denote the values of a sequence using subscript notation. Thus if $a_{i}=\varphi(i), i \in I$, then $\left\{a_{i}\right\}_{i \in I}$ denotes the sequence φ. For example, we may define the sequence of the previous example by writing $a_{i}=i^{2}, i=1,2,3, \ldots$

Definition Suppose $\left\{a_{i}\right\}_{i \in I}$ is a sequence with values in \mathbb{Q}. We say that $\left\{a_{i}\right\}_{i \in I}$ converges, and has limit $L, L \in \mathbb{Q}$, if for every $\epsilon>0, \epsilon \in \mathbb{Q}$, there exists $N \in \mathbb{Z}$ such that

$$
\left|a_{i}-L\right|<\epsilon
$$

whenever $i>N$.
If the sequence $\left\{a_{i}\right\}_{i \in I}$ converges to L, we write

$$
\lim _{i \rightarrow \infty} a_{i}=L
$$

For example, clearly

$$
\lim _{i \rightarrow \infty} \frac{1}{i}=0
$$

since, for any rational number $\epsilon>0$,

$$
\left|\frac{1}{i}-0\right|=\frac{1}{i}<\epsilon
$$

for any $i>N$ where N is any integer larger than $\frac{1}{\epsilon}$.
Definition Suppose $\left\{a_{i}\right\}_{i \in I}$ is a sequence with values in \mathbb{Q}. We call $\left\{a_{i}\right\}_{i \in I}$ a Cauchy sequence if for every $\epsilon>0, \epsilon \in \mathbb{Q}$, there exists $N \in \mathbb{Z}$ such that

$$
\left|a_{i}-a_{k}\right|<\epsilon
$$

whenever both $i>N$ and $k>N$.
Proposition If $\left\{a_{i}\right\}_{i \in I}$ converges, then $\left\{a_{i}\right\}_{i \in I}$ is a Cauchy sequence.
Proof Suppose $\lim _{i \rightarrow \infty} a_{i}=L$. Given $\epsilon>0$, choose an integer N such that

$$
\left|a_{i}-L\right|<\frac{\epsilon}{2}
$$

for all $i>N$. Then for any $i, k>N$, we have

$$
\left|a_{i}-a_{k}\right|=\left|\left(a_{i}-L\right)+\left(a_{k}-L\right)\right| \leq\left|a_{i}-L\right|+\left|a_{k}-L\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon .
$$

Hence $\left\{a_{i}\right\}_{i \in I}$ is a Cauchy sequence.
The proposition shows that every convergent sequence in \mathbb{Q} is a Cauchy sequence, but the converse does not hold. For an example, let

$$
f(x)=x^{2}-2
$$

and consider the sequence constructed as follows: Begin by setting $a_{1}=1, b_{1}=2$, and $x_{1}=\frac{3}{2}$. If $f\left(a_{1}\right) f\left(x_{1}\right)<0$, set

$$
x_{2}=\frac{a_{1}+x_{1}}{2},
$$

$a_{2}=a_{1}$, and $b_{2}=x_{1}$; otherwise, set

$$
x_{2}=\frac{x_{1}+b_{1}}{2}
$$

$a_{2}=x_{1}$, and $b_{2}=b_{1}$. In general, given a_{n}, x_{n}, and b_{n}, if $f\left(a_{n}\right) f\left(x_{n}\right)<0$, set

$$
x_{n+1}=\frac{a_{n}+x_{n}}{2}
$$

$a_{n+1}=a_{n}$, and $b_{n+1}=x_{n} ;$ otherwise, set

$$
x_{n+1}=\frac{x_{n}+b_{n}}{2}
$$

$a_{n+1}=x_{n}$, and $b_{n+1}=b_{n}$. Note that for any positive integer N,

$$
a_{N}<x_{i}<b_{N}
$$

for all $i>N$. Moreover,

$$
\left|b_{N}-a_{N}\right|=\frac{1}{2^{N-1}},
$$

so

$$
\left|x_{i}-x_{k}\right|<\frac{1}{2^{N-1}}
$$

for all $i, k>N$. Hence given any $\epsilon>0$, if we choose an integer N such that $2^{N-1}>\frac{1}{\epsilon}$, then

$$
\left|x_{i}-x_{k}\right|<\frac{1}{2^{N-1}}<\epsilon,
$$

showing that $\left\{x_{i}\right\}_{i=1}^{\infty}$ is a Cauchy sequence. Now suppose $\left\{x_{i}\right\}_{i=1}^{\infty}$ converges to $s \in \mathbb{Q}$. Note that we must have

$$
a_{i} \leq s \leq b_{i}
$$

for all $i \in \mathbb{Z}^{+}$. If $f(s)<0$, then, since the set $\left\{a: a \in \mathbb{Q}, a^{2}<2\right\}$ does not have a supremum, there exists $t \in \mathbb{Q}$ such that $s<t$ and $f(t)<0$. If we choose N so that

$$
\frac{1}{2^{N-1}}<t-s
$$

then

$$
\left|s-b_{N}\right| \leq\left|a_{N}-b_{N}\right|=\frac{1}{2^{N-1}}<t-s
$$

Hence $b_{N}<t$, which implies that $f\left(b_{N}\right)<0$. However, the sequence $\left\{b_{i}\right\}_{i=1}^{\infty}$ was constructed so that $f\left(b_{i}\right)>0$ for all $i \in \mathbb{Z}^{+}$. Hence we must have $f(s)>0$. But if $f(s)>0$, then there exists $t \in \mathbb{Q}$ such that $t<s$ and $f(t)>0$. We can then choose N so that $t<a_{N}$, implying that $f\left(a_{N}\right)>0$. But the sequence $\left\{a_{i}\right\}_{i=1}^{\infty}$ was constructed so that $f\left(a_{i}\right)<0$ for all $i \in \mathbb{Z}^{+}$. Hence we must have $f(s)=0$, which is not possible since $s \in \mathbb{Q}$. Thus we must conclude that $\left\{x_{i}\right\}_{i=1}^{\infty}$ does not converge.

