Lecture 3: Sequences of Rational Numbers

3.1 Rational numbers: upper and lower bounds

Definition Let \(A \subseteq \mathbb{Q} \). If \(s \in \mathbb{Q} \) is such that \(s \geq a \) for every \(a \in A \), then we call \(s \) an *upper bound* for \(A \). If \(s \) is an upper bound for \(A \) with the property that \(s \leq t \) whenever \(t \) is an upper bound for \(A \), then we call \(s \) the *supremum*, or *least upper bound*, of \(A \), denoted \(s = \sup A \). Similarly, if \(r \in \mathbb{Q} \) is such that \(r \leq a \) for every \(a \in A \), then we call \(r \) a *lower bound* for \(A \). If \(r \) is a lower bound for \(A \) with the property that \(r \geq t \) whenever \(t \) is a lower bound for \(A \), then we call \(r \) the *infimum*, or *greatest lower bound*, of \(A \), denoted \(r = \inf A \).

Exercise 3.1.1
Show that the supremum of a set \(A \subseteq \mathbb{Q} \), if it exists, is unique, and thus justify the use of the definite article in the previous definition.

A set which does not have an upper bound will not, *a fortiori*, have a supremum. For example, \(\mathbb{Q} \) itself does not have an upper bound. Moreover, even sets which have upper bounds need not have a supremum. Consider the set \(A = \{ a : a \in \mathbb{Q}, a^2 < 2 \} \). Then, for example, 4 is an upper bound for \(A \). Now suppose \(s \in \mathbb{Q} \) is the supremum of \(A \). Suppose \(s^2 < 2 \) and let \(\epsilon = 2 - s^2 \). By the archimedean property of \(\mathbb{Q} \), we may choose \(n \in \mathbb{Z}^+ \) such that

\[
\frac{2s + 1}{n} < \epsilon,
\]
from which it follows that

\[
\frac{2s}{n} + \frac{1}{n^2} = \frac{2s + \frac{1}{n}}{n} \leq \frac{2s + 1}{n} < \epsilon.
\]

Hence

\[(s + \frac{1}{n})^2 = s^2 + \frac{2s}{n} + \frac{1}{n^2} < s^2 + \epsilon = 2,
\]
which implies that \(s + \frac{1}{n} \in A \). Since \(s < s + \frac{1}{n} \), this contradicts the assumption that \(s \) is an upper bound for \(A \). So now suppose \(s^2 > 2 \). Again let \(n \in \mathbb{Z}^+ \) and note that

\[(s - \frac{1}{n})^2 = s^2 - \frac{2s}{n} + \frac{1}{n^2} < s^2 - 2 = \frac{1}{n^2},
\]

If we let \(\epsilon = s^2 - 2 \), then we may choose \(n \in \mathbb{Z}^+ \) so that

\[
\frac{2s}{n} < \epsilon.
\]

It follows that

\[(s - \frac{1}{n})^2 > s^2 - \epsilon + \frac{1}{n^2} = 2 + \frac{1}{n^2} > 2.
\]
Thus \(s - \frac{1}{n} \) is an upper bound for \(A \) and \(s - \frac{1}{n} < s \), contradicting the assumption that \(s = \sup A \). Thus we must have \(s^2 = 2 \). However, this is impossible in light of the following proposition. Hence we must conclude that \(A \) does not have a supremum.
Proposition There does not exist a rational number s with the property that $s^2 = 2$.

Proof Suppose there exists $s \in \mathbb{Q}$ such that $s^2 = 2$. Choose $a, b \in \mathbb{Z}^+$ so that a and b are relatively prime (that is, they have no factor other than 1 in common) and $s = \frac{a}{b}$. Then
\[\frac{a^2}{b^2} = 2, \]
so $a^2 = 2b^2$. Thus a^2, and hence a, is an even integer. So there exists $c \in \mathbb{Z}^+$ such that $a = 2c$. Hence
\[a^2 = 4c^2 = 2b^2, \]
from which it follows that $b^2 = 2c$, and so b is also an even integer. But this contradicts the assumption that a and b are relatively prime.

Exercise 3.1.2
Show that there does not exist a rational number s with the property that $s^2 = 3$.

Exercise 3.1.3
Show that there does not exist a rational number s with the property that $s^2 = 6$.

Exercise 3.1.4
As above, let $A = \{a : a \in \mathbb{Q}, a^2 < 2\}$.
(a) Show that if $b \in A$ and $0 < a < b$, then $a \in A$.
(b) Show that if $a > 0, a \notin A$, and $b > a$, then $b \notin A$.

3.2 Sequences of rational Numbers

Definition Suppose $n \in \mathbb{Z}, I = \{n, n+1, n+2, \ldots\}$, and A is a set. A function $\varphi : I \to A$ is called a sequence with values in A.

Frequently, we will define a sequence φ by specifying its values with notation such as, for example, $\{\varphi(i)\}_{i \in I}$, or $\{\varphi(i)\}_{i=n}^{\infty}$. Thus, for example, $\{i^2\}_{i=1}^{\infty}$ denotes the sequence $\varphi : \mathbb{Z}^+ \to \mathbb{Z}$ defined by $\varphi(i) = i^2$. Moreover, it is customary to denote the values of a sequence using subscript notation. Thus if $a_i = \varphi(i), i \in I$, then $\{a_i\}_{i \in I}$ denotes the sequence φ. For example, we may define the sequence of the previous example by writing $a_i = i^2, i = 1, 2, 3, \ldots$.

Definition Suppose $\{a_i\}_{i \in I}$ is a sequence with values in \mathbb{Q}. We say that $\{a_i\}_{i \in I}$ converges, and has limit $L, L \in \mathbb{Q}$, if for every $\varepsilon > 0, \varepsilon \in \mathbb{Q}$, there exists $N \in \mathbb{Z}$ such that
\[|a_i - L| < \varepsilon \]
whenever $i > N$.

If the sequence $\{a_i\}_{i \in I}$ converges to L, we write
\[\lim_{i \to \infty} a_i = L. \]

For example, clearly
\[\lim_{i \to \infty} \frac{1}{i} = 0 \]
since, for any rational number \(\epsilon > 0 \),
\[
\left| \frac{1}{i} - 0 \right| = \frac{1}{i} < \epsilon
\]
for any \(i > N \) where \(N \) is any integer larger than \(\frac{1}{\epsilon} \).

Definition Suppose \(\{a_i\}_{i \in I} \) is a sequence with values in \(\mathbb{Q} \). We call \(\{a_i\}_{i \in I} \) a **Cauchy sequence** if for every \(\epsilon > 0, \epsilon \in \mathbb{Q} \), there exists \(N \in \mathbb{Z} \) such that
\[
|a_i - a_k| < \epsilon
\]
whenever both \(i > N \) and \(k > N \).

Proposition If \(\{a_i\}_{i \in I} \) converges, then \(\{a_i\}_{i \in I} \) is a Cauchy sequence.

Proof Suppose \(\lim_{i \to \infty} a_i = L \). Given \(\epsilon > 0 \), choose an integer \(N \) such that
\[
|a_i - L| < \frac{\epsilon}{2}
\]
for all \(i > N \). Then for any \(i, k > N \), we have
\[
|a_i - a_k| = |(a_i - L) + (a_k - L)| \leq |a_i - L| + |a_k - L| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.
\]
Hence \(\{a_i\}_{i \in I} \) is a Cauchy sequence.

The proposition shows that every convergent sequence in \(\mathbb{Q} \) is a Cauchy sequence, but the converse does not hold. For an example, let
\[
f(x) = x^2 - 2
\]
and consider the sequence constructed as follows: Begin by setting \(a_1 = 1 \), \(b_1 = 2 \), and \(x_1 = \frac{3}{2} \). If \(f(a_1)f(x_1) < 0 \), set
\[
x_2 = \frac{a_1 + x_1}{2},
\]
a_2 = a_1, and \(b_2 = x_1 \); otherwise, set
\[
x_2 = \frac{x_1 + b_1}{2},
\]
a_2 = x_1, and \(b_2 = b_1 \). In general, given \(a_n, x_n \), and \(b_n \), if \(f(a_n)f(x_n) < 0 \), set
\[
x_{n+1} = \frac{a_n + x_n}{2},
\]
a_{n+1} = a_n, and \(b_{n+1} = x_n \); otherwise, set
\[
x_{n+1} = \frac{x_n + b_n}{2},
\]
\[a_{n+1} = x_n, \text{ and } b_{n+1} = b_n. \text{ Note that for any positive integer } N,\]
\[a_N < x_i < b_N\]
for all \(i > N\). Moreover,
\[|b_N - a_N| = \frac{1}{2^{N-1}},\]
so
\[|x_i - x_k| < \frac{1}{2^{N-1}}\]
for all \(i, k > N\). Hence given any \(\varepsilon > 0\), if we choose an integer \(N\) such that \(2^{N-1} > \frac{1}{\varepsilon}\), then
\[|x_i - x_k| < \frac{1}{2^{N-1}} < \varepsilon,\]
showing that \(\{x_i\}_{i=1}^\infty\) is a Cauchy sequence. Now suppose \(\{x_i\}_{i=1}^\infty\) converges to \(s \in \mathbb{Q}\). Note that we must have
\[a_i \leq s \leq b_i\]
for all \(i \in \mathbb{Z}^+\). If \(f(s) < 0\), then, since the set \(\{a : a \in \mathbb{Q}, a^2 < 2\}\) does not have a supremum, there exists \(t \in \mathbb{Q}\) such that \(s < t\) and \(f(t) < 0\). If we choose \(N\) so that
\[\frac{1}{2^{N-1}} < t - s,\]
then
\[|s - b_N| \leq |a_N - b_N| = \frac{1}{2^{N-1}} < t - s.\]
Hence \(b_N < t\), which implies that \(f(b_N) < 0\). However, the sequence \(\{b_i\}_{i=1}^\infty\) was constructed so that \(f(b_i) > 0\) for all \(i \in \mathbb{Z}^+\). Hence we must have \(f(s) > 0\). But if \(f(s) > 0\), then there exists \(t \in \mathbb{Q}\) such that \(t < s\) and \(f(t) > 0\). We can then choose \(N\) so that \(t < a_N\), implying that \(f(a_N) > 0\). But the sequence \(\{a_i\}_{i=1}^\infty\) was constructed so that \(f(a_i) < 0\) for all \(i \in \mathbb{Z}^+\). Hence we must have \(f(s) = 0\), which is not possible since \(s \in \mathbb{Q}\). Thus we must conclude that \(\{x_i\}_{i=1}^\infty\) does not converge.