
Lecture 3: Sequences of Rational Numbers

3.1 Rational numbers: upper and lower bounds

De�nition Let A � Q. If s 2 Q is such that s � a for every a 2 A, then we call s an
upper bound for A. If s is an upper bound for A with the property that s � t whenever t
is an upper bound for A, then we call s the supremum, or least upper bound, of A, denoted
s = supA. Similarly, if r 2 Q is such that r � a for every a 2 A, then we call r a lower

bound for A. If r is a lower bound for A with the property that r � t whenever t is a lower
bound for A, then we call r the in�mum, or greatest lower bound, of A, denoted r = inf A.

Exercise 3.1.1

Show that the supremum of a set A � Q, if it exists, is unique, and thus justify the use of
the de�nite article in the previous de�nition.

A set which does not have an upper bound will not, a fortiori, have a supremum. For
example, Q itself does not have an upper bound. Moreover, even sets which have upper
bounds need not have a supremum. Consider the set A = fa : a 2 Q; a2 < 2g. Then, for
example, 4 is an upper bound for A. Now suppose s 2 Q is the supremum of A. Suppose
s2 < 2 and let � = 2� s2. By the archimedean property of Q, we may choose n 2Z+ such
that

2s+ 1

n
< �;

from which it follows that

2s

n
+

1

n2
=

2s+ 1

n

n
�

2s+ 1

n
< �:

Hence

(s +
1

n
)2 = s2 +

2s

n
+

1

n2
< s2 + � = 2;

which implies that s + 1

n
2 A. Since s < s + 1

n
, this contradicts the assumption that s is

an upper bound for A. So now suppose s2 > 2. Again let n 2Z+ and note that

(s �
1

n
)2 = s2 �

2s

n
+

1

n2
:

If we let � = s2 � 2, then we may choose n 2Z+ so that

2s

n
< �:

It follows that

(s �
1

n
)2 > s2 � �+

1

n2
= 2 +

1

n2
> 2:

Thus s � 1

n
is an upper bound for A and s � 1

n
< s, contradicting the assumption that

s = supA. Thus we must have s2 = 2. However, this is impossible in light of the following
proposition. Hence we must conclude that A does not have a supremum.
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Proposition There does not exist a rational number s with the property that s2 = 2.

Proof Suppose there exists s 2 Q such that s2 = 2. Choose a; b 2 Z+ so that a and
b are relatively prime (that is, they have no factor other than 1 in common) and s = a

b
.

Then
a2

b2
= 2;

so a2 = 2b2. Thus a2, and hence a, is an even integer. So there exists c 2 Z+ such that
a = 2c. Hence

a2 = 4c2 = 2b2;

from which it follows that b2 = 2c, and so b is also an even integer. But this contradicts
the assumption that a and b are relatively prime.

Exercise 3.1.2

Show that there does not exist a rational number s with the property that s2 = 3.

Exercise 3.1.3

Show that there does not exist a rational number s with the property that s2 = 6.

Exercise 3.1.4

As above, let A = fa : a 2 Q; a2 < 2g.
(a) Show that if b 2 A and 0 < a < b, then a 2 A.
(b) Show that if a > 0, a =2 A, and b > a, then b =2 A.

3.2 Sequences of rational Numbers

De�nition Suppose n 2Z, I = fn; n+1; n+2; : : :g, and A is a set. A function ' : I ! A
is called a sequence with values in A.

Frequently, we will de�ne a sequence ' by specifying its values with notation such as,
for example, f'(i)gi2I , or f'(i)g1i=n. Thus, for example, fi2g1

i=1 denotes the sequence
' : Z+ ! Zde�ned by '(i) = i2. Moreover, it is customary to denote the values of a
sequence using subscript notation. Thus if ai = '(i), i 2 I, then faigi2I denotes the
sequence '. For example, we may de�ne the sequence of the previous example by writing
ai = i2, i = 1; 2; 3; : : :.

De�nition Suppose faigi2I is a sequence with values in Q. We say that faigi2I con-

verges, and has limit L, L 2 Q, if for every � > 0, � 2 Q, there exists N 2 Z such
that

jai � Lj < �

whenever i > N .

If the sequence faigi2I converges to L, we write

lim
i!1

ai = L:

For example, clearly

lim
i!1

1

i
= 0
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since, for any rational number � > 0,

j
1

i
� 0j =

1

i
< �

for any i > N where N is any integer larger than 1

�
.

De�nition Suppose faigi2I is a sequence with values in Q. We call faigi2I a Cauchy

sequence if for every � > 0, � 2 Q, there exists N 2Zsuch that

jai � akj < �

whenever both i > N and k > N .

Proposition If faigi2I converges, then faigi2I is a Cauchy sequence.

Proof Suppose limi!1 ai = L. Given � > 0, choose an integer N such that

jai � Lj <
�

2

for all i > N . Then for any i; k > N , we have

jai � akj = j(ai � L) + (ak � L)j � jai �Lj+ jak � Lj <
�

2
+

�

2
= �:

Hence faigi2I is a Cauchy sequence.

The proposition shows that every convergent sequence in Q is a Cauchy sequence, but
the converse does not hold. For an example, let

f(x) = x2 � 2

and consider the sequence constructed as follows: Begin by setting a1 = 1, b1 = 2, and
x1 =

3

2
. If f(a1)f(x1) < 0, set

x2 =
a1 + x1

2
;

a2 = a1, and b2 = x1; otherwise, set

x2 =
x1 + b1

2
;

a2 = x1, and b2 = b1. In general, given an, xn, and bn, if f(an)f(xn) < 0, set

xn+1 =
an + xn

2
;

an+1 = an, and bn+1 = xn; otherwise, set

xn+1 =
xn + bn

2
;
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an+1 = xn, and bn+1 = bn. Note that for any positive integer N ,

aN < xi < bN

for all i > N . Moreover,

jbN � aN j =
1

2N�1
;

so

jxi � xkj <
1

2N�1

for all i; k > N . Hence given any � > 0, if we choose an integer N such that 2N�1 > 1

�
,

then

jxi � xkj <
1

2N�1
< �;

showing that fxig1i=1 is a Cauchy sequence. Now suppose fxig1i=1 converges to s 2 Q.
Note that we must have

ai � s � bi

for all i 2 Z+. If f(s) < 0, then, since the set fa : a 2 Q; a2 < 2g does not have a
supremum, there exists t 2 Q such that s < t and f(t) < 0. If we choose N so that

1

2N�1
< t� s;

then

js� bN j � jaN � bN j =
1

2N�1
< t� s:

Hence bN < t, which implies that f(bN ) < 0. However, the sequence fbig
1

i=1 was con-
structed so that f(bi) > 0 for all i 2 Z+. Hence we must have f(s) > 0. But if f(s) > 0,
then there exists t 2 Q such that t < s and f(t) > 0. We can then choose N so that t < aN ,
implying that f(aN ) > 0. But the sequence faig1i=1 was constructed so that f(ai) < 0 for
all i 2Z+. Hence we must have f(s) = 0, which is not possible since s 2 Q. Thus we must
conclude that fxig1i=1 does not converge.


