Lecture 26: The Logarithm and Exponential Functions

26.1 The logarithm function

Definition Given a positive real number x, we call
1

log(x) :/ — dt
1t

Note that log(1) =0, log(z) < 0 when 0 < z < 1, and log(z) > 0 when « > 1.

the logarithm of x.

Proposition The function f(x) = log(x) is an increasing, differentiable function with

1
/ — —
Fa) =+
for all z > 0.

Proof Using the fundamental theorem of calculus, we have
1
!/
=—->0
fla)= 1>
for all > 0, from which the result follows.

Proposition For any x > 0,
1
1 (-) — _log(z).
og ( - og(z)

Proof Using the substitution t = %, we have

1 51 g 1 1
10g<—>:/ —dt:/ u<——> du:—/ — du = —log(z).
x t 1 u? 1 u
Proposition For any positive real numbers = and v,
log(xy) = log(x) + log(y).

Proof Using the substitution t = xu, we have

Ty 1
log(2y) = / n dt
1
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Proposition If r € Q and z is a positive real number, then
log(x") = rlog(x).

Proof Using the substitution t = «", we have

z" 1 T r—1 T
log(x") = / —dt = / ru du = r/ — du = rlog(z).
1t 1ou’ 1 u

Proposition We have

lim log(x) = +o0

r—+oco

and

lim 1 = —oo.
pg, loslr) = oo

Proof Given a real number M, choose an integer n for which nlog(2) > M (this can be
done since log(2) > 0). Then for any x > 2", we have

log(x) > log(2") = nlog(2) > M.

Hence lim,_, 1 log(z) = +oo.

Similarly, given any real number M, we may choose an integer n for which —nlog(2) <

M. Then for any 0 < x < 2%, we have

1
log(z) < log <2—n> = —nlog(2) < M.

Hence lim, o+ log(x) = —oo.
Note that the logarithm function has domain (0, +o0) and range (—oo, +00)

Exercise 26.1.1
Show that for any rational number o > 0,

lim z% = +oo.
r—+oco

Proposition For any rational number o > 0,

lim log(z)

r—+oo ¢

= 0.

Proof Choose a rational number  such that 0 < 8 < a. Now for any ¢ > 1,

< =P

| =
| =
Il
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1 S| 2P -1 2P
log(:zj):/l ;alt</1 Py dt = 3 <ﬁ

whenever x > 1. Thus

Hence

for x > 1. But

SO

Exercise 26.1.2
Show that

for any rational number o > 0.

26.2 The exponential function

Definition The inverse of the logarithm function is called the ezponential function. The
value of the exponential function at a real number x is denoted exp(x).

Proposition The exponential function has domain R and range (0,4+o0). Moreover,
the exponential function is increasing and differentiable on R. If f(z) = exp(x), then

f'(x) = exp(x).
Proof Ouly the final statement of the proposition requires proof. If g(x) = log(x), then

! = 71 = exXplx
P = eptay = 72

Proposition For any real numbers x and y,
exp(x +y) = exp(a) exp(y).
Proof The result follows from
log(exp(z)exp(y)) = log(exp(z)) + log(exp(y)) = = + y.

Proposition For any real number z,

1
explz)

exp(—a) =
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Proof The result follows from

log <@> = —log(exp(x)) = —x.

Exercise 26.2.1
Use Taylor’s theorem to show that

1
exp(l) =e = —
p(l)=e=>_ i
n=0
Proposition For any rational number «,
exp(a) = €.

Proof Since log(e) =1, we have

log(e®) = alog(e) = a.

Definition If « is an irrational number, we define

«

e” = exp(a).

Note that for any real numbers x and v,

etV = ¢%eY
and

Moreover, log(e®) = & and, if z > 0, €1°8(*) = g

Definition If x and a are real numbers with a > 0, we define

a® = % log(a) )

Exercise 26.2.2

26-4

Suppose f : (0,+00) — R is given by f(x) = x%, where a € R, a # 0. Show that

f(x) = az®~ 1.
Exercise 26.2.3

Suppose «a is a positive real number and f : R — R is defined by f(z) = a

f'(z) = a* log(a).

. Show that
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Proposition For any real number o > 0,

lim z% % =0.
r—+oco

Proof We know that
log(y)

lim = 0.
y——+oo K}
Hence | N
L Jos)®
y—>+oo Yy
Letting y = €*, we have
lim — =0.

r—+oco et

Proposition For any real number «,

Proof First note that, letting « = %,

r—+oco

Using I’Hopital’s rule, we have

lim log ((1 4+ ah)®) = lim —== "2 _ _
Jim, log (1 +ah)7) = lim —— Jm,

and the result follows from the continuity of the exponential function.

Exercise 26.2.4
The hyperbolic sine and hyperbolic cosine functions are defined by

et —e %
() —
sinh(x) 5
and ~
cosh(x) = %,

respectively. Verify the following:
(a) For any real numbers « and y,

sinh(2 + y) = sinh(«) cosh(y) + sinh(y) cosh(x)

and

cosh(x + y) = cosh(x) cosh(y) + sinh(x) sinh(y).
(b) For any real number z,
cosh?(z) — sinh?(z) = 1.
(¢) If f(x) = sinh(x) and g(x) = cosh(x), then
f'(x) = cosh(x)
and

¢'(z) = sinh(x).

lim <1+3>x = lim (1+ah)F = lim ¢ (a+am®)
Z h

a,
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