Lecture 26: The Logarithm and Exponential Functions

26.1 The logarithm function

Definition Given a positive real number x, we call

$$
\log (x)=\int_{1}^{x} \frac{1}{t} d t
$$

the logarithm of x.
Note that $\log (1)=0, \log (x)<0$ when $0<x<1$, and $\log (x)>0$ when $x>1$.
Proposition The function $f(x)=\log (x)$ is an increasing, differentiable function with

$$
f^{\prime}(x)=\frac{1}{x}
$$

for all $x>0$.
Proof Using the fundamental theorem of calculus, we have

$$
f^{\prime}(x)=\frac{1}{x}>0
$$

for all $x>0$, from which the result follows.
Proposition For any $x>0$,

$$
\log \left(\frac{1}{x}\right)=-\log (x)
$$

Proof Using the substitution $t=\frac{1}{u}$, we have

$$
\log \left(\frac{1}{x}\right)=\int_{1}^{\frac{1}{x}} \frac{1}{t} d t=\int_{1}^{x} u\left(-\frac{1}{u^{2}}\right) d u=-\int_{1}^{x} \frac{1}{u} d u=-\log (x)
$$

Proposition For any positive real numbers x and y,

$$
\log (x y)=\log (x)+\log (y)
$$

Proof Using the substitution $t=x u$, we have

$$
\begin{aligned}
\log (x y) & =\int_{1}^{x y} \frac{1}{t} d t \\
& =\int_{\frac{1}{x}}^{y} \frac{x}{x u} d u \\
& =\int_{\frac{1}{x}}^{1} \frac{1}{u} d u+\int_{1}^{y} \frac{1}{u} d u \\
& =-\int_{1}^{\frac{1}{x}} \frac{1}{u} d u+\log (y) \\
& =-\log \left(\frac{1}{x}\right)+\log (y) \\
& =\log (x)+\log (y)
\end{aligned}
$$

Proposition If $r \in \mathbb{Q}$ and x is a positive real number, then

$$
\log \left(x^{r}\right)=r \log (x)
$$

Proof Using the substitution $t=u^{r}$, we have

$$
\log \left(x^{r}\right)=\int_{1}^{x^{r}} \frac{1}{t} d t=\int_{1}^{x} \frac{r u^{r-1}}{u^{r}} d u=r \int_{1}^{x} \frac{1}{u} d u=r \log (x) .
$$

Proposition We have

$$
\lim _{x \rightarrow+\infty} \log (x)=+\infty
$$

and

$$
\lim _{x \rightarrow 0^{+}} \log (x)=-\infty
$$

Proof Given a real number M, choose an integer n for which $n \log (2)>M$ (this can be done since $\log (2)>0)$. Then for any $x>2^{n}$, we have

$$
\log (x)>\log \left(2^{n}\right)=n \log (2)>M
$$

Hence $\lim _{x \rightarrow+\infty} \log (x)=+\infty$.
Similarly, given any real number M, we may choose an integer n for which $-n \log (2)<$ M. Then for any $0<x<\frac{1}{2^{n}}$, we have

$$
\log (x)<\log \left(\frac{1}{2^{n}}\right)=-n \log (2)<M
$$

Hence $\lim _{x \rightarrow 0^{+}} \log (x)=-\infty$.
Note that the logarithm function has domain $(0,+\infty)$ and range $(-\infty,+\infty)$

Exercise 26.1.1

Show that for any rational number $\alpha>0$,

$$
\lim _{x \rightarrow+\infty} x^{\alpha}=+\infty
$$

Proposition For any rational number $\alpha>0$,

$$
\lim _{x \rightarrow+\infty} \frac{\log (x)}{x^{\alpha}}=0
$$

Proof Choose a rational number β such that $0<\beta<\alpha$. Now for any $t>1$,

$$
\frac{1}{t}<\frac{1}{t} t^{\beta}=\frac{1}{t^{1-\beta}}
$$

Hence

$$
\log (x)=\int_{1}^{x} \frac{1}{t} d t<\int_{1}^{x} \frac{1}{t^{1-\beta}} d t=\frac{x^{\beta}-1}{\beta}<\frac{x^{\beta}}{\beta}
$$

whenever $x>1$. Thus

$$
0<\frac{\log (x)}{x^{\alpha}}<\frac{1}{\beta x^{\alpha-\beta}}
$$

for $x>1$. But

$$
\lim _{x \rightarrow+\infty} \frac{1}{\beta x^{\alpha-\beta}}=0
$$

so

$$
\lim _{x \rightarrow+\infty} \frac{\log (x)}{x^{\alpha}}=0
$$

Exercise 26.1.2
Show that

$$
\lim _{x \rightarrow 0^{+}} x^{\alpha} \log (x)=0
$$

for any rational number $\alpha>0$.

26.2 The exponential function

Definition The inverse of the logarithm function is called the exponential function. The value of the exponential function at a real number x is denoted $\exp (x)$.

Proposition The exponential function has domain \mathbb{R} and range $(0,+\infty)$. Moreover, the exponential function is increasing and differentiable on \mathbb{R}. If $f(x)=\exp (x)$, then $f^{\prime}(x)=\exp (x)$.
Proof Only the final statement of the proposition requires proof. If $g(x)=\log (x)$, then

$$
f^{\prime}(x)=\frac{1}{g^{\prime}(\exp (x))}=\exp (x)
$$

Proposition For any real numbers x and y,

$$
\exp (x+y)=\exp (x) \exp (y)
$$

Proof The result follows from

$$
\log (\exp (x) \exp (y))=\log (\exp (x))+\log (\exp (y))=x+y
$$

Proposition For any real number x,

$$
\exp (-x)=\frac{1}{\exp (x)}
$$

Proof The result follows from

$$
\log \left(\frac{1}{\exp (x)}\right)=-\log (\exp (x))=-x
$$

Exercise 26.2.1

Use Taylor's theorem to show that

$$
\exp (1)=e=\sum_{n=0}^{\infty} \frac{1}{n!}
$$

Proposition For any rational number α,

$$
\exp (\alpha)=e^{\alpha}
$$

Proof Since $\log (e)=1$, we have

$$
\log \left(e^{\alpha}\right)=\alpha \log (e)=\alpha
$$

Definition If α is an irrational number, we define

$$
e^{\alpha}=\exp (\alpha)
$$

Note that for any real numbers x and y,

$$
e^{x+y}=e^{x} e^{y}
$$

and

$$
e^{-x}=\frac{1}{e^{x}}
$$

Moreover, $\log \left(e^{x}\right)=x$ and, if $x>0, e^{\log (x)}=x$.
Definition If x and a are real numbers with $a>0$, we define

$$
a^{x}=e^{x \log (a)} .
$$

Exercise 26.2.2

Suppose $f:(0,+\infty) \rightarrow \mathbb{R}$ is given by $f(x)=x^{a}$, where $a \in \mathbb{R}, a \neq 0$. Show that $f^{\prime}(x)=a x^{a-1}$.

Exercise 26.2.3

Suppose a is a positive real number and $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $f(x)=a^{x}$. Show that $f^{\prime}(x)=a^{x} \log (a)$.

Proposition For any real number $\alpha>0$,

$$
\lim _{x \rightarrow+\infty} x^{\alpha} e^{-x}=0
$$

Proof We know that

$$
\lim _{y \rightarrow+\infty} \frac{\log (y)}{y^{\frac{1}{a}}}=0
$$

Hence

$$
\lim _{y \rightarrow+\infty} \frac{(\log (y))^{\alpha}}{y}=0
$$

Letting $y=e^{x}$, we have

$$
\lim _{x \rightarrow+\infty} \frac{x^{\alpha}}{e^{x}}=0
$$

Proposition For any real number α,

$$
\lim _{x \rightarrow+\infty}\left(1+\frac{\alpha}{x}\right)^{x}=e^{\alpha}
$$

Proof First note that, letting $x=\frac{1}{h}$,

$$
\lim _{x \rightarrow+\infty}\left(1+\frac{\alpha}{x}\right)^{x}=\lim _{h \rightarrow 0^{+}}(1+\alpha h)^{\frac{1}{h}}=\lim _{h \rightarrow 0^{+}} e^{\log \left((1+\alpha h)^{\frac{1}{h}}\right)} .
$$

Using l'Hôpital's rule, we have

$$
\lim _{h \rightarrow 0^{+}} \log \left((1+\alpha h)^{\frac{1}{h}}\right)=\lim _{h \rightarrow 0^{+}} \frac{\log (1+\alpha h)}{h}=\lim _{h \rightarrow 0^{+}} \frac{\alpha}{1+\alpha h}=\alpha
$$

and the result follows from the continuity of the exponential function.

Exercise 26.2.4

The hyperbolic sine and hyperbolic cosine functions are defined by

$$
\sinh (x)=\frac{e^{x}-e^{-x}}{2}
$$

and

$$
\cosh (x)=\frac{e^{x}+e^{-x}}{2}
$$

respectively. Verify the following:
(a) For any real numbers x and y,

$$
\sinh (x+y)=\sinh (x) \cosh (y)+\sinh (y) \cosh (x)
$$

and

$$
\cosh (x+y)=\cosh (x) \cosh (y)+\sinh (x) \sinh (y)
$$

(b) For any real number x,

$$
\cosh ^{2}(x)-\sinh ^{2}(x)=1
$$

(c) If $f(x)=\sinh (x)$ and $g(x)=\cosh (x)$, then

$$
f^{\prime}(x)=\cosh (x)
$$

and

$$
g^{\prime}(x)=\sinh (x)
$$

