25.1 Definitions

We begin by defining functions

$$s:\left(-\frac{\pi}{2},\frac{\pi}{2}\right]\to\mathbb{R}$$

 $\quad \text{and} \quad$

$$c:\left(-\frac{\pi}{2},\frac{\pi}{2}\right] \to \mathbb{R}$$

by

$$s(x) = \begin{cases} \frac{\tan(x)}{\sqrt{1 + \tan^2(x)}}, & \text{if } x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right), \\ 1, & \text{if } x = \frac{\pi}{2} \end{cases}$$

and

$$c(x) = \begin{cases} \frac{1}{\sqrt{1 + \tan^2(x)}}, & \text{if } x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right), \\ 0, & \text{if } x = \frac{\pi}{2}. \end{cases}$$

Note that

$$\lim_{x \to \frac{\pi}{2}^{-}} s(x) = \lim_{y \to +\infty} \frac{y}{\sqrt{1+y^2}} = \lim_{y \to +\infty} \frac{1}{\sqrt{1+\frac{1}{y^2}}} = 1$$

and

$$\lim_{x \to \frac{\pi}{2}^{-}} c(x) = \lim_{y \to +\infty} \frac{1}{\sqrt{1+y^2}} = \lim_{y \to +\infty} \frac{\frac{1}{y}}{\sqrt{1+\frac{1}{y^2}}} = 0,$$

which shows that both s and c are continuous functions.

Next, we extend the definitions of s and c to functions

$$S:\left(-\frac{\pi}{2},\frac{3\pi}{2}\right]\to\mathbb{R}$$

and

$$C:\left(-\frac{\pi}{2},\frac{3\pi}{2}\right] \to \mathbb{R}$$

by defining

$$S(x) = \begin{cases} s(x), & \text{if } x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right], \\ -s(x-\pi), & \text{if } x \in \left(\frac{\pi}{2}, \frac{3\pi}{2}\right] \end{cases}$$

and

$$C(x) = \begin{cases} c(x), & \text{if } x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right], \\ -c(x-\pi), & \text{if } x \in \left(\frac{\pi}{2}, \frac{3\pi}{2}\right]. \end{cases}$$

Note that

$$\lim_{x \to \frac{\pi}{2}^+} S(x) = \lim_{x \to -\frac{\pi}{2}^+} -s(x) = -\lim_{y \to -\infty} \frac{y}{\sqrt{1+y^2}} = -\lim_{y \to -\infty} \frac{1}{-\sqrt{1+\frac{1}{y^2}}} = 1$$

and

$$\lim_{x \to \frac{\pi}{2}^+} C(x) = \lim_{x \to -\frac{\pi}{2}^+} -c(x) = -\lim_{y \to -\infty} \frac{1}{\sqrt{1+y^2}} = -\lim_{y \to -\infty} \frac{\frac{1}{y}}{-\sqrt{1+\frac{1}{y^2}}} = 0,$$

which shows that both S and C are continuous at $\frac{\pi}{2}$. Thus both S and C are continuous. Finally, for any $x \in \mathbb{R}$, let

$$g(x) = \sup\{n : n \in \mathbb{Z}, -\frac{\pi}{2} + 2n\pi < x\}.$$

With the notation as above, for any $x \in \mathbb{R}$ we call Definition

$$\sin(x) = S(x - 2\pi g(x))$$

and

$$\cos(x) = C(x - 2\pi g(x))$$

the sine and cosine of x, respectively.

Proposition The sine and cosine functions are continuous on \mathbb{R} .

Proof From the definitions, it is sufficient to verify continuity at $\frac{3\pi}{2}$. Now

$$\lim_{x \to \frac{3\pi}{2}^{-}} \sin(x) = \lim_{x \to \frac{3\pi}{2}^{-}} S(x) = S\left(\frac{3\pi}{2}\right) = -s\left(\frac{\pi}{2}\right) = -1$$

and

$$\lim_{x \to \frac{3\pi}{2}^+} \sin(x) = \lim_{x \to \frac{3\pi}{2}^+} S(x - 2\pi)$$
$$= \lim_{x \to -\frac{\pi}{2}^+} s(x)$$
$$= \lim_{y \to -\infty} \frac{y}{\sqrt{1 + y^2}}$$
$$= \lim_{y \to -\infty} \frac{1}{-\sqrt{1 + \frac{1}{y^2}}}$$
$$= -1,$$

and so sine is continuous at $\frac{3\pi}{2}$. Similarly,

$$\lim_{x \to \frac{3\pi}{2}^{-}} \cos(x) = \lim_{x \to \frac{3\pi}{2}^{-}} C(x) = C\left(\frac{3\pi}{2}\right) = -c\left(\frac{\pi}{2}\right) = 0$$

and

$$\lim_{x \to \frac{3\pi}{2}^{+}} \cos(x) = \lim_{x \to \frac{3\pi}{2}^{+}} C(x - 2\pi)$$
$$= \lim_{x \to -\frac{\pi}{2}^{+}} c(x)$$
$$= \lim_{y \to -\infty} \frac{1}{\sqrt{1 + y^2}}$$
$$= \lim_{y \to -\infty} \frac{\frac{1}{y}}{-\sqrt{1 + \frac{1}{y^2}}}$$
$$= 0,$$

and so cosine is continuous at $\frac{3\pi}{2}$.

25.2 Properties of sine and cosine

Proposition The sine and cosine functions are periodic with period 2π .

Proof The result follows immediately from the definitions.

Proposition For any $x \in \mathbb{R}$, $\sin(-x) = -\sin(x)$ and $\cos(-x) = \cos(x)$.

Proof The result follows immediately from the definitions.

Proposition For any $x \in \mathbb{R}$, $\sin^2(x) + \cos^2(x) = 1$.

Proof The result follows immediately from the definition of s and c.

Proposition The range of both the sine and cosine functions is [-1, 1].

Proof The result follows immediately from the definitions along with the facts that

$$\sqrt{1+y^2} \ge \sqrt{y^2} = |y|$$

and

$$\sqrt{1+y^2} \ge 1$$

for any $y \in \mathbb{R}$.

Proposition For any x in the domain of the tangent function,

$$\tan(x) = \frac{\sin(x)}{\cos(x)}.$$

Proof The result follows immediately from the definitions.

Proposition For any x in the domain of the tangent function,

$$\sin^{2}(x) = \frac{\tan^{2}(x)}{1 + \tan^{2}(x)}$$

and

$$\cos^2(x) = \frac{1}{1 + \tan^2(x)}.$$

Proof The result follows immediately from the definitions. **Proposition** For any $x, y \in \mathbb{R}$,

$$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y).$$

Proof First suppose x, y, and x + y are in the domain of the tangent function. Then

$$\cos^{2}(x+y) = \frac{1}{1+\tan^{2}(x+y)}$$

$$= \frac{1}{1+\left(\frac{\tan(x)+\tan(y)}{1-\tan(x)\tan(y)}\right)^{2}}$$

$$= \frac{(1-\tan(x)\tan(y))^{2}}{(1-\tan(x)\tan(y))^{2}+(\tan(x)+\tan(y))^{2}}$$

$$= \frac{(1-\tan(x)\tan(y))^{2}}{(1+\tan^{2}(x))(1+\tan^{2}(y))}$$

$$= \left(\frac{1}{\sqrt{1+\tan^{2}(x)}\sqrt{1+\tan^{2}(y)}} - \frac{\tan(x)\tan(y)}{\sqrt{1+\tan^{2}(x)}\sqrt{1+\tan^{2}(y)}}\right)^{2}$$

$$= (\cos(x)\cos(y) - \sin(x)\sin(y))^{2}.$$

Hence

$$\cos(x+y) = \pm(\cos(x)\cos(y) - \sin(x)\sin(y)).$$

Consider a fixed value of x. Note that the positive sign must be chosen when y = 0. Moreover, increasing y by π changes the sign on both sides, so the positive sign must be chosen when y is any multiple of π . Since sine and cosine are continuous functions, the choice of sign could change only at points at which both sides are 0, but these points are separated by a distance of π , so we must always choose the positive sign. Hence we have

$$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$$

for all $x, y \in \mathbb{R}$ for which x, y, and x + y are in the domain of the tangent function. The identity for the other values of x and y now follows from the continuity of the sine and cosine functions.

Proposition For any $x, y \in \mathbb{R}$,

$$\sin(x+y) = \sin(x)\cos(y) + \sin(y)\cos(x).$$

Exercise 25.2.1

Prove the previous proposition.

Exercise 25.2.2

Show that for any $x \in \mathbb{R}$,

$$\sin\left(\frac{\pi}{2} - x\right) = \cos(x)$$
$$\cos\left(\frac{\pi}{2} - x\right) = \sin(x)$$

and

$$\cos\left(\frac{\pi}{2} - x\right) = \sin(x)$$

Exercise 25.2.3

Show that for any $x \in \mathbb{R}$,

$$\sin(2x) = 2\sin(x)\cos(x)$$

and

and

$$\cos(2x) = \cos^2(x) - \sin^2(x).$$

Exercise 25.2.4

Show that for any $x \in \mathbb{R}$,

$$\sin^{2}(x) = \frac{1 - \cos(2x)}{2}$$
$$\cos^{2}(x) = \frac{1 + \cos(2x)}{2}.$$

Exercise 25.2.5

Show that

$$\sin\left(\frac{\pi}{4}\right) = \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}},$$
$$\sin\left(\frac{\pi}{6}\right) = \cos\left(\frac{\pi}{3}\right) = \frac{1}{2},$$
$$\sin\left(\frac{\pi}{3}\right) = \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}.$$

and

$$25-5$$

25.3 The calculus of the trigonometric functions

Proposition $\lim_{x \to 0} \frac{\arctan(x)}{x} = 1.$

Proof Using l'Hôpital's rule,

$$\lim_{x \to 0} \frac{\arctan(x)}{x} = \lim_{x \to 0} \frac{\frac{1}{1+x^2}}{1} = 1.$$

Proposition $\lim_{x \to 0} \frac{\tan(x)}{x} = 1.$

Proof Letting $x = \arctan(u)$, we have

$$\lim_{x \to 0} \frac{\tan(x)}{x} = \lim_{u \to 0} \frac{u}{\arctan(u)} = 1.$$

Proposition $\lim_{x \to 0} \frac{\sin(x)}{x} = 1.$

Proof We have

$$\lim_{x \to 0} \frac{\sin(x)}{x} = \lim_{x \to 0} \frac{\tan(x)}{x} \cos(x) = 1.$$

Proposition $\lim_{x \to 0} \frac{1 - \cos(x)}{x} = 0.$

Proof We have

$$\lim_{x \to 0} \frac{1 - \cos(x)}{x} = \lim_{x \to 0} \left(\frac{1 - \cos(x)}{x}\right) \left(\frac{1 + \cos(x)}{1 + \cos(x)}\right)$$
$$= \lim_{x \to 0} \frac{1 - \cos^2(x)}{x(1 + \cos(x))}$$
$$= \lim_{x \to 0} \left(\frac{\sin(x)}{x}\right) \left(\frac{\sin(x)}{1 + \cos(x)}\right)$$
$$= (1)(0) = 0.$$

Proposition If $f(x) = \sin(x)$, then $f'(x) = \cos(x)$. **Proof** We have

$$f'(x) = \lim_{h \to 0} \frac{\sin(x+h) - \sin(x)}{h}$$
$$= \lim_{h \to 0} \frac{\sin(x)\cos(h) + \sin(h)\cos(x) - \sin(x)}{h}$$
$$= \sin(x) \lim_{h \to 0} \frac{\cos(h) - 1}{h} + \cos(x) \lim_{h \to 0} \frac{\sin(h)}{h}$$
$$= \cos(x).$$

Proposition If $f(x) = \cos(x)$, then $f'(x) = -\sin(x)$.

Exercise 25.3.1

Prove the previous proposition.

Definition For appropriate $x \in \mathbb{R}$,

$$\cot(x) = \frac{\cos x}{\sin(x)},$$
$$\sec(x) = \frac{1}{\cos(x)},$$

and

$$\csc(x) = \frac{1}{\sin(x)}$$

are called the *cotangent*, *secant*, and *cosecant* of x, respectively.

Exercise 25.3.2

If $f(x) = \tan(x)$, $g(x) = \cot(x)$, $h(x) = \sec(x)$, and $k(x) = \csc(x)$, show that

$$f'(x) = \sec^2(x),$$

$$g'(x) = -\csc^2(x),$$

$$h'(x) = \sec(x)\tan(x),$$

and

$$k'(x) = -\csc(x)\cot(x).$$

Proposition $2\int_{-1}^{1}\sqrt{1-x^2}dx = \pi.$

Proof Let $x = \sin(u)$. Then as u varies from $-\frac{\pi}{2}$ to $\frac{\pi}{2}$, x varies from -1 to 1. And, for these values, we have

$$\sqrt{1-x^2} = \sqrt{1-\sin^2(u)} = \sqrt{\cos^2(u)} = |\cos(u)| = \cos(u).$$

Hence

$$\int_{-1}^{1} \sqrt{1 - x^2} dx = \pi = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^2(u) du$$
$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1 + \cos(2u)}{2} du$$
$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{2} du + \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos(2u) du$$
$$= \frac{\pi}{2} + \frac{1}{4} (\sin(\pi) - \sin(-\pi))$$
$$= \frac{\pi}{2}.$$

Exercise 25.3.3

Find the Taylor polynomial P_9 of order 9 for $f(x) = \sin(x)$ at 0. Note that this is equal to the Taylor polynomial of order 10 for f at 0. Is $P_9\left(\frac{1}{2}\right)$ an overestimate or an underestimate for $\sin\left(\frac{1}{2}\right)$? Find an upper bound for the error in this approximation.