Lecture 25: The Sine and Cosine Functions

25.1 Definitions

We begin by defining functions

$$
s:\left(-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow \mathbb{R}
$$

and

$$
c:\left(-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow \mathbb{R}
$$

by

$$
s(x)= \begin{cases}\frac{\tan (x)}{\sqrt{1+\tan ^{2}(x)}}, & \text { if } x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \\ 1, & \text { if } x=\frac{\pi}{2}\end{cases}
$$

and

$$
c(x)= \begin{cases}\frac{1}{\sqrt{1+\tan ^{2}(x)}}, & \text { if } x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \\ 0, & \text { if } x=\frac{\pi}{2}\end{cases}
$$

Note that

$$
\lim _{x \rightarrow \frac{\pi}{2}-} s(x)=\lim _{y \rightarrow+\infty} \frac{y}{\sqrt{1+y^{2}}}=\lim _{y \rightarrow+\infty} \frac{1}{\sqrt{1+\frac{1}{y^{2}}}}=1
$$

and

$$
\lim _{x \rightarrow \frac{\pi}{2}^{-}} c(x)=\lim _{y \rightarrow+\infty} \frac{1}{\sqrt{1+y^{2}}}=\lim _{y \rightarrow+\infty} \frac{\frac{1}{y}}{\sqrt{1+\frac{1}{y^{2}}}}=0
$$

which shows that both s and c are continuous functions.
Next, we extend the definitions of s and c to functions

$$
S:\left(-\frac{\pi}{2}, \frac{3 \pi}{2}\right] \rightarrow \mathbb{R}
$$

and

$$
C:\left(-\frac{\pi}{2}, \frac{3 \pi}{2}\right] \rightarrow \mathbb{R}
$$

by defining

$$
S(x)= \begin{cases}s(x), & \text { if } x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right] \\ -s(x-\pi), & \text { if } x \in\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right]\end{cases}
$$

and

$$
C(x)= \begin{cases}c(x), & \text { if } x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right] \\ -c(x-\pi), & \text { if } x \in\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right]\end{cases}
$$

Note that

$$
\lim _{x \rightarrow \frac{\pi}{2}^{+}} S(x)=\lim _{x \rightarrow-\frac{\pi}{2}+}-s(x)=-\lim _{y \rightarrow-\infty} \frac{y}{\sqrt{1+y^{2}}}=-\lim _{y \rightarrow-\infty} \frac{1}{-\sqrt{1+\frac{1}{y^{2}}}}=1
$$

and

$$
\lim _{x \rightarrow \frac{\pi}{2}+} C(x)=\lim _{x \rightarrow-\frac{\pi}{2}+}-c(x)=-\lim _{y \rightarrow-\infty} \frac{1}{\sqrt{1+y^{2}}}=-\lim _{y \rightarrow-\infty} \frac{\frac{1}{y}}{-\sqrt{1+\frac{1}{y^{2}}}}=0
$$

which shows that both S and C are continuous at $\frac{\pi}{2}$. Thus both S and C are continuous.
Finally, for any $x \in \mathbb{R}$, let

$$
g(x)=\sup \left\{n: n \in \mathbb{Z},-\frac{\pi}{2}+2 n \pi<x\right\} .
$$

Definition With the notation as above, for any $x \in \mathbb{R}$ we call

$$
\sin (x)=S(x-2 \pi g(x))
$$

and

$$
\cos (x)=C(x-2 \pi g(x))
$$

the sine and cosine of x, respectively.
Proposition The sine and cosine functions are continuous on \mathbb{R}.
Proof From the definitions, it is sufficient to verify continuity at $\frac{3 \pi}{2}$. Now

$$
\lim _{x \rightarrow \frac{3 \pi}{2}-} \sin (x)=\lim _{x \rightarrow \frac{3 \pi^{-}}{2}} S(x)=S\left(\frac{3 \pi}{2}\right)=-s\left(\frac{\pi}{2}\right)=-1
$$

and

$$
\begin{aligned}
\lim _{x \rightarrow \frac{3 \pi}{2}+} \sin (x) & =\lim _{x \rightarrow \frac{3 \pi}{2}+} S(x-2 \pi) \\
& =\lim _{x \rightarrow-\frac{\pi}{2}+} s(x) \\
& =\lim _{y \rightarrow-\infty} \frac{y}{\sqrt{1+y^{2}}} \\
& =\lim _{y \rightarrow-\infty} \frac{1}{-\sqrt{1+\frac{1}{y^{2}}}} \\
& =-1,
\end{aligned}
$$

and so sine is continuous at $\frac{3 \pi}{2}$. Similarly,

$$
\lim _{x \rightarrow \frac{3 \pi}{2}-} \cos (x)=\lim _{x \rightarrow \frac{3 \pi}{2}-} C(x)=C\left(\frac{3 \pi}{2}\right)=-c\left(\frac{\pi}{2}\right)=0
$$

and

$$
\begin{aligned}
\lim _{x \rightarrow \frac{3 \pi}{2}+} \cos (x) & =\lim _{x \rightarrow \frac{3 \pi}{2}+} C(x-2 \pi) \\
& =\lim _{x \rightarrow-\frac{\pi}{2}+} c(x) \\
& =\lim _{y \rightarrow-\infty} \frac{1}{\sqrt{1+y^{2}}} \\
& =\lim _{y \rightarrow-\infty} \frac{\frac{1}{y}}{-\sqrt{1+\frac{1}{y^{2}}}} \\
& =0
\end{aligned}
$$

and so cosine is continuous at $\frac{3 \pi}{2}$.

25.2 Properties of sine and cosine

Proposition The sine and cosine functions are periodic with period 2π.
Proof The result follows immediately from the definitions.
Proposition For any $x \in \mathbb{R}, \sin (-x)=-\sin (x)$ and $\cos (-x)=\cos (x)$.
Proof The result follows immediately from the definitions.
Proposition For any $x \in \mathbb{R}, \sin ^{2}(x)+\cos ^{2}(x)=1$.
Proof The result follows immediately from the definition of s and c.
Proposition The range of both the sine and cosine functions is $[-1,1]$.
Proof The result follows immediately from the definitions along with the facts that

$$
\sqrt{1+y^{2}} \geq \sqrt{y^{2}}=|y|
$$

and

$$
\sqrt{1+y^{2}} \geq 1
$$

for any $y \in \mathbb{R}$.
Proposition For any x in the domain of the tangent function,

$$
\tan (x)=\frac{\sin (x)}{\cos (x)}
$$

Proof The result follows immediately from the definitions.

Proposition For any x in the domain of the tangent function,

$$
\sin ^{2}(x)=\frac{\tan ^{2}(x)}{1+\tan ^{2}(x)}
$$

and

$$
\cos ^{2}(x)=\frac{1}{1+\tan ^{2}(x)}
$$

Proof The result follows immediately from the definitions.
Proposition For any $x, y \in \mathbb{R}$,

$$
\cos (x+y)=\cos (x) \cos (y)-\sin (x) \sin (y)
$$

Proof First suppose x, y, and $x+y$ are in the domain of the tangent function. Then

$$
\begin{aligned}
\cos ^{2}(x+y) & =\frac{1}{1+\tan ^{2}(x+y)} \\
& =\frac{1}{1+\left(\frac{\tan (x)+\tan (y)}{1-\tan (x) \tan (y)}\right)^{2}} \\
& =\frac{(1-\tan (x) \tan (y))^{2}}{(1-\tan (x) \tan (y))^{2}+(\tan (x)+\tan (y))^{2}} \\
& =\frac{(1-\tan (x) \tan (y))^{2}}{\left(1+\tan ^{2}(x)\right)\left(1+\tan ^{2}(y)\right)} \\
& =\left(\frac{1}{\sqrt{1+\tan ^{2}(x)} \sqrt{1+\tan ^{2}(y)}}-\frac{\tan (x) \tan (y)}{\sqrt{1+\tan ^{2}(x)} \sqrt{1+\tan ^{2}(y)}}\right)^{2} \\
& =\left(\cos (x) \cos (y)-\sin (x) \sin ^{2}(y)\right)^{2} .
\end{aligned}
$$

Hence

$$
\cos (x+y)= \pm(\cos (x) \cos (y)-\sin (x) \sin (y))
$$

Consider a fixed value of x. Note that the positive sign must be chosen when $y=0$. Moreover, increasing y by π changes the sign on both sides, so the positive sign must be chosen when y is any multiple of π. Since sine and cosine are continuous functions, the
choice of sign could change only at points at which both sides are 0 , but these points are separated by a distance of π, so we must always choose the positive sign. Hence we have

$$
\cos (x+y)=\cos (x) \cos (y)-\sin (x) \sin (y)
$$

for all $x, y \in \mathbb{R}$ for which x, y, and $x+y$ are in the domain of the tangent function. The identity for the other values of x and y now follows from the continuity of the sine and cosine functions.

Proposition For any $x, y \in \mathbb{R}$,

$$
\sin (x+y)=\sin (x) \cos (y)+\sin (y) \cos (x) .
$$

Exercise 25.2.1

Prove the previous proposition.

Exercise 25.2.2

Show that for any $x \in \mathbb{R}$,

$$
\sin \left(\frac{\pi}{2}-x\right)=\cos (x)
$$

and

$$
\cos \left(\frac{\pi}{2}-x\right)=\sin (x)
$$

Exercise 25.2.3

Show that for any $x \in \mathbb{R}$,

$$
\sin (2 x)=2 \sin (x) \cos (x)
$$

and

$$
\cos (2 x)=\cos ^{2}(x)-\sin ^{2}(x)
$$

Exercise 25.2.4

Show that for any $x \in \mathbb{R}$,

$$
\sin ^{2}(x)=\frac{1-\cos (2 x)}{2}
$$

and

$$
\cos ^{2}(x)=\frac{1+\cos (2 x)}{2} .
$$

Exercise 25.2.5

Show that

$$
\begin{aligned}
& \sin \left(\frac{\pi}{4}\right)=\cos \left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}} \\
& \sin \left(\frac{\pi}{6}\right)=\cos \left(\frac{\pi}{3}\right)=\frac{1}{2}
\end{aligned}
$$

and

$$
\sin \left(\frac{\pi}{3}\right)=\cos \left(\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}
$$

25.3 The calculus of the trigonometric functions

Proposition $\lim _{x \rightarrow 0} \frac{\arctan (x)}{x}=1$.
Proof Using l'Hôpital's rule,

$$
\lim _{x \rightarrow 0} \frac{\arctan (x)}{x}=\lim _{x \rightarrow 0} \frac{\frac{1}{1+x^{2}}}{1}=1
$$

Proposition $\lim _{x \rightarrow 0} \frac{\tan (x)}{x}=1$.
Proof Letting $x=\arctan (u)$, we have

$$
\lim _{x \rightarrow 0} \frac{\tan (x)}{x}=\lim _{u \rightarrow 0} \frac{u}{\arctan (u)}=1
$$

Proposition $\quad \lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1$.
Proof We have

$$
\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=\lim _{x \rightarrow 0} \frac{\tan (x)}{x} \cos (x)=1 .
$$

Proposition $\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x}=0$.
Proof We have

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x} & =\lim _{x \rightarrow 0}\left(\frac{1-\cos (x)}{x}\right)\left(\frac{1+\cos (x)}{1+\cos (x)}\right) \\
& =\lim _{x \rightarrow 0} \frac{1-\cos ^{2}(x)}{x(1+\cos (x))} \\
& =\lim _{x \rightarrow 0}\left(\frac{\sin (x)}{x}\right)\left(\frac{\sin (x)}{1+\cos (x)}\right) \\
& =(1)(0)=0 .
\end{aligned}
$$

Proposition If $f(x)=\sin (x)$, then $f^{\prime}(x)=\cos (x)$.
Proof We have

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin (x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sin (x) \cos (h)+\sin (h) \cos (x)-\sin (x)}{h} \\
& =\sin (x) \lim _{h \rightarrow 0} \frac{\cos (h)-1}{h}+\cos (x) \lim _{h \rightarrow 0} \frac{\sin (h)}{h} \\
& =\cos (x) .
\end{aligned}
$$

Proposition If $f(x)=\cos (x)$, then $f^{\prime}(x)=-\sin (x)$.

Exercise 25.3.1

Prove the previous proposition.
Definition For appropriate $x \in \mathbb{R}$,

$$
\begin{aligned}
& \cot (x)=\frac{\cos x}{\sin (x)} \\
& \sec (x)=\frac{1}{\cos (x)},
\end{aligned}
$$

and

$$
\csc (x)=\frac{1}{\sin (x)}
$$

are called the cotangent, secant, and cosecant of x, respectively.

Exercise 25.3.2

If $f(x)=\tan (x), g(x)=\cot (x), h(x)=\sec (x)$, and $k(x)=\csc (x)$, show that

$$
\begin{gathered}
f^{\prime}(x)=\sec ^{2}(x), \\
g^{\prime}(x)=-\csc ^{2}(x), \\
h^{\prime}(x)=\sec (x) \tan (x),
\end{gathered}
$$

and

$$
k^{\prime}(x)=-\csc (x) \cot (x) .
$$

Proposition $\quad 2 \int_{-1}^{1} \sqrt{1-x^{2}} d x=\pi$.
Proof Let $x=\sin (u)$. Then as u varies from $-\frac{\pi}{2}$ to $\frac{\pi}{2}, x$ varies from -1 to 1 . And, for these values, we have

$$
\sqrt{1-x^{2}}=\sqrt{1-\sin ^{2}(u)}=\sqrt{\cos ^{2}(u)}=|\cos (u)|=\cos (u) .
$$

Hence

$$
\begin{aligned}
\int_{-1}^{1} \sqrt{1-x^{2}} d x=\pi & =\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos ^{2}(u) d u \\
& =\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1+\cos (2 u)}{2} d u \\
& =\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{2} d u+\frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos (2 u) d u \\
& =\frac{\pi}{2}+\frac{1}{4}(\sin (\pi)-\sin (-\pi)) \\
& =\frac{\pi}{2}
\end{aligned}
$$

Exercise 25.3.3

Find the Taylor polynomial P_{9} of order 9 for $f(x)=\sin (x)$ at 0 . Note that this is equal to the Taylor polynomial of order 10 for f at 0 . Is $P_{9}\left(\frac{1}{2}\right)$ an overestimate or an underestimate for $\sin \left(\frac{1}{2}\right)$? Find an upper bound for the error in this approximation.

