Lecture 25: The Sine and Cosine Functions

25.1 Definitions
We begin by defining functions
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which shows that both s and ¢ are continuous functions.
Next, we extend the definitions of s and ¢ to functions
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which shows that both S and C are continuous at % Thus both 5 and C are continuous.

Finally, for any « € R, let

g(x) =sup{n:n € Z, —g + 2n7 < x}.

Definition With the notation as above, for any x € R we call
sin(x) = S(a — 27g(x))
and
cos(z) = C(x —2rg(x))
the sine and cosine of x, respectively.
Proposition The sine and cosine functions are continuous on R.
Proof From the definitions, it is sufficient to verify continuity at 37” Now

lim sin(x) = lim S(z)= S<3—7T> = —3<Z> =1

3r — 3 —

and

lim sin(z) = lim S(z —27)
x—>37”+ x—>37”+
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and so sine is continuous at 37” Similarly,

lim cos(z) = lim C(x) = C<3—7T> = —c<z> =0

1:—)3?”_ 1:—)3?”_ 2 2
and
lim cos(x) = lim C(x —2m)
et e—2rt
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and so cosine is continuous at 37”

25.2 Properties of sine and cosine

Proposition The sine and cosine functions are periodic with period 27.
Proof The result follows immediately from the definitions.
Proposition For any = € R, sin(—z) = —sin(z) and cos(—x) = cos(z).
Proof The result follows immediately from the definitions.
Proposition For any = € R, sin®(x) + cos?(z) = 1.

Proof The result follows immediately from the definition of s and c.
Proposition The range of both the sine and cosine functions is [—1, 1].

Proof The result follows immediately from the definitions along with the facts that

VItyr> 2=y

and
Vit+yr>1
for any y € R.

Proposition For any = in the domain of the tangent function,

sin(x)

tan(z) = cos(z)”

Proof The result follows immediately from the definitions.
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For any = in the domain of the tangent function,

tan?
sin®(z) = _an\r (f)
1 + tan®(x)
1
2 _
cos™(z) = 14 tanz(:zj)'

Proof The result follows immediately from the definitions.

Proposition

For any z,y € R,

cos(x + y) = cos(x) cos(y) — sin(a) sin(y).

Proof First suppose z, y, and = 4+ y are in the domain of the tangent function. Then

Hence

cos’? (x +y)

14+ tanz(:zj +y)

14 ( tan<x>1+tan<y> )

1 — tan(z) tan(y)

_ (1 — tan(z) tan(y))?
(1 — tan(x)tan(y))? + (tan(x) + tan(y))?

_ (1 — tan(x)tan(y))?
[+ () (1 1 ban(y))

_ ( 1 B tan(z) tan(y) ) :
\/1 +tan2(:1;)\/1 +tan2(y) \/1 +tan2(:1;)\/1 +tan2(y)

= (cos(x) cos(y) — sin(x) sin(y))-.

cos(x + y) = +(cos(x) cos(y) — sin(x) sin(y)).

Consider a fixed value of z. Note that the positive sign must be chosen when y = 0.
Moreover, increasing y by 7 changes the sign on both sides, so the positive sign must be
chosen when y is any multiple of w. Since sine and cosine are continuous functions,the
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choice of sign could change only at points at which both sides are 0, but these points are
separated by a distance of 7, so we must always choose the positive sign. Hence we have

cos(x + y) = cos(x) cos(y) — sin(x) sin(y)

for all x,y € R for which z, y, and = + y are in the domain of the tangent function. The
identity for the other values of x and y now follows from the continuity of the sine and
cosine functions.

Proposition For any x,y € R,
sin(x + y) = sin(x) cos(y) + sin(y) cos(x).

Exercise 25.2.1
Prove the previous proposition.

Exercise 25.2.2
Show that for any = € R,

sin <g — :1;> = cos(x)

and

cos <g — :1;> = sin(x).

Exercise 25.2.3
Show that for any = € R,

sin(2x) = 2sin(x) cos(x)
and

cos(2x) = cosz(:zj) — sinz(:zj).

Exercise 25.2.4
Show that for any = € R,

1— 2
sin?(z) = L= 05(2)
2
and . 5
cos?(z) = %@;)

Exercise 25.2.5

Show that - - .
sin <Z> = cos <Z> = ﬁ,
sin <%> = cos <g> = %,
and

sin <g> = cos <%> = g
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25.3 The calculus of the trigonometric functions

t
Proposition lim M =1.
xr—0 x
Proof Using 'Hopital’s rule,
1
fi R _ gy Lo® g
£—0 x z—0 1
t
Proposition lim an(z) =1.
xr—0 x
Proof Letting @ = arctan(u), we have
t
lim an(z) — lim — & —1.
=0 u—0 arctan(u)
. . sin(x)
Proposition lim =1.
xr—0 x
Proof We have _
t
li sin(z) =1l an(z) cos(z) =1
z—0 x z—0 X
1
Proposition lim ﬂ = 0.
xr—0 x
Proof We have
lm 1 — cos(x)  lm 1 — cos(x) 1 + cos(x)
x—0 x *—0 x 1 + cos(x)

] 1— cosz(:z;)
= lim ———M
z=0 (1 + cos(x))

- (M) (o)

— (1)(0) = 0.

Proposition If f(x) =sin(x), then f'(x) = cos(z).
Proof We have

sin(x + h) — sin(z
F(0) = g S0l ) i)

sin(x) cos(h) 4 sin(h) cos(x) — sin(x)

= Jm h
. . cos(h)—1 . sin(h)
= sin(x) ’}1_1?(1) — + cos(x) %1_1% .

= cos(x).
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Proposition If f(x) = cos(z), then f'(x) = —sin(x).

Exercise 25.3.1

Prove the previous proposition.

Definition For appropriate z € R,

and

cot(w) = sin(z)’
1

see(e) = cos(x)

cse(x) = L

sin(x)

are called the cotangent, secant, and cosecant of x, respectively.

Exercise 25.3.2

If f(x) = tan(x), g(x) = cot(x), h(x) = sec(x), and k(x) = csc(x), show that

and

f(2) = sec*(a),

¢ (2) = - esc?(2),
R'(z) = sec(x) tan(z),

E'(z) = — ese(x) cot(z).

1
Proposition 2/ V1—22de = 7.
—1

Proof Let x = sin(u). Then as u varies from —Z to 7, x varies from —1 to 1. And, for

these values, we have

V1—22 =4/1—sin*(u) = \/cos?(u) = | cos(u)| = cos(u).

Hence

s
279

[V

1
/ V1—z2der =7 = / cosz(u)du
—1

/ 1 + cos(2u) J
" du

Il
RN

RERVE

= /_% % du + %/_; cos(2u)du
1, . )
= — 4+ Z(Sm(ﬂ-) — sin(—m))
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Exercise 25.3.3
Find the Taylor polynomial Py of order 9 for f(x) = sin(x) at 0. Note that this is equal to
the Taylor polynomial of order 10 for f at 0. Is Py (%) an overestimate or an underestimate

for sin (%)7 Find an upper bound for the error in this approximation.



