Lecture 24: The Tangent Function

24.1 An improper integral

Definition If f is integrable on $[a, b]$ for all $b>a$ and

$$
\lim _{b \rightarrow+\infty} \int_{a}^{b} f(x) d x
$$

exists, then we define

$$
\int_{a}^{+\infty} f(x) d x=\lim _{b \rightarrow+\infty} \int_{a}^{b} f(x) d x
$$

If f is integrable on $[a, b]$ for all $a<b$ and

$$
\lim _{a \rightarrow-\infty} \int_{a}^{b} f(x) d x
$$

exists, then we define

$$
\int_{-\infty}^{b} f(x) d x=\lim _{a \rightarrow-\infty} \int_{a}^{b} f(x) d x
$$

Proposition Suppose f is continuous on $[a, \infty)$ and $f(x) \geq 0$ for all $x \geq a$. If there exists $g:[a,+\infty) \rightarrow \mathbb{R}$ for which $\int_{a}^{+\infty} g(x) d x$ exists and $g(x) \geq f(x)$ for all $x \geq a$, then $\int_{a}^{+\infty} f(x) d x$ exists.
Proof See Exercise 23.2.5.
Example Suppose

$$
f(x)=\frac{1}{1+x^{2}}
$$

and

$$
g(x)= \begin{cases}1, & \text { if } 0 \leq x<1 \\ \frac{1}{x^{2}}, & \text { if } x \geq 1\end{cases}
$$

Then, for $b>1$,

$$
\int_{0}^{b} g(x) d x=\int_{0}^{1} d x+\int_{1}^{b} \frac{1}{x^{2}} d x=1+1-\frac{1}{b}=2-\frac{1}{b}
$$

so

$$
\int_{0}^{+\infty} g(x) d x=\lim _{b \rightarrow \infty}\left(2-\frac{1}{b}\right)=2
$$

Since $0<f(x) \leq g(x)$ for all $x \geq 0$, it follows that

$$
\int_{0}^{+\infty} \frac{1}{1+x^{2}}
$$

exists, and, moreover,

$$
\int_{0}^{+\infty} \frac{1}{1+x^{2}} d x<2
$$

Also, the substitution $u=-x$ shows that

$$
\int_{-\infty}^{0} \frac{1}{1+x^{2}} d x=-\int_{+\infty}^{0} \frac{1}{1+u^{2}} d u=\int_{0}^{+\infty} \frac{1}{1+u^{2}} d u
$$

24.2 The arctangent function

Definition For any $x \in \mathbb{R}$, we call

$$
\arctan (x)=\int_{0}^{x} \frac{1}{1+t^{2}} d t
$$

the arctangent of x.
Proposition The arctangent function is differentiable at every $x \in \mathbb{R}$. Moreover, if $f(x)=\arctan (x)$, then

$$
f^{\prime}(x)=\frac{1}{1+x^{2}}
$$

Proof The result follows immediately from the the fundamental theorem of calculus.
Proposition The arctangent is increasing on \mathbb{R}.
Proof The result follows immediately from the previous proposition and the fact that

$$
\frac{1}{1+x^{2}}>0
$$

for every $x \in \mathbb{R}$.
Definition $\quad \pi=2 \lim _{x \rightarrow+\infty} \arctan (x)=2 \int_{0}^{+\infty} \frac{1}{1+t^{2}} d t$.
The following proposition says that the arctangent function is an odd function.
Proposition For any $x \in \mathbb{R}$, $\arctan (x)=-\arctan (-x)$.
Proof Using the substitution $t=-u$, we have

$$
\arctan (x)=\int_{0}^{x} \frac{1}{1+t^{2}} d t=-\int_{0}^{-x} \frac{1}{1+u^{2}} d u=-\arctan (-x)
$$

It now follows that

$$
\lim _{x \rightarrow-\infty} \arctan (x)=-\lim _{x \rightarrow-\infty} \arctan (-x)=-\frac{\pi}{2}
$$

Hence the range of the arctangent function is

$$
\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)
$$

Proposition If $x>0$, then

$$
\arctan (x)+\arctan \left(\frac{1}{x}\right)=\frac{\pi}{2}
$$

Proof Using the substitution $t=\frac{1}{u}$, we have

$$
\begin{aligned}
\int_{0}^{\frac{1}{x}} \frac{1}{1+t^{2}} d t & =\int_{+\infty}^{x} \frac{1}{1+\frac{1}{u^{2}}}\left(-\frac{1}{u^{2}}\right) d u \\
& =-\int_{+\infty}^{x} \frac{1}{1+u^{2}} d u \\
& =\int_{x}^{+\infty} \frac{1}{1+u^{2}} d u \\
& =\frac{\pi}{2}-\int_{0}^{x} \frac{1}{1+u^{2}} d u \\
& =\frac{\pi}{2}-\arctan (x)
\end{aligned}
$$

Proposition If $x<0$, then

$$
\arctan (x)+\arctan \left(\frac{1}{x}\right)=-\frac{\pi}{2} .
$$

Proof The result follows immediately from the preceding proposition and the fact that arctangent is an odd function.

24.3 The tangent function

Let

$$
A=\left\{\frac{\pi}{2}+n \pi: n \in \mathbb{Z}\right\}
$$

and $D=\mathbb{R} \backslash A$. Let

$$
t:\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow \mathbb{R}
$$

be the inverse of the arctangent function. Note that t is increasing and differentiable on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. We may extend t to a function on D as follows: For any $x \in D$, let

$$
g(x)=\sup \left\{n: n \in \mathbb{Z},-\frac{\pi}{2}+n \pi<x\right\}
$$

and define $T(x)=t(x-g(x) \pi)$.
Definition With the notation of the above discussion, for any $x \in D$, the value $T(x)$ is called the tangent of x, denoted $\tan (x)$.

Proposition The tangent function has domain D (as defined above), range \mathbb{R}, and is differentiable at every point $x \in D$. Moreover, the tangent function is increasing on each interval of the form

$$
\left(-\frac{\pi}{2}+n \pi, \frac{\pi}{2}+n \pi\right)
$$

$n \in \mathbb{Z}$, with

$$
\tan \left(\left(\frac{\pi}{2}+n \pi\right)+\right)=-\infty
$$

and

$$
\tan \left(\left(\frac{\pi}{2}+n \pi\right)-\right)=+\infty
$$

Definition Let $D \subset \mathbb{R}$. A function $f: D \rightarrow \mathbb{R}$ is said to be periodic with period p if $f(x+p)=f(x)$ for all $x \in D$.

Proposition The tangent function has period π.
Proof The result follows immediately from our definitions.

24.4 The addition formula for tangent

We will now derive the addition formula for tangent. To begin, suppose $y_{1}, y_{2} \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ with $y_{1}+y_{2} \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Let $x_{1}=\tan \left(y_{1}\right)$ and $x_{2}=\tan \left(y_{2}\right)$. Note that if $x_{1}>0$, then $x_{1} x_{2} \geq 1$ would imply that

$$
x_{2} \geq \frac{1}{x_{1}},
$$

which in turn implies that

$$
\arctan \left(x_{1}\right)+\arctan \left(x_{2}\right) \geq \arctan \left(x_{1}\right)+\arctan \left(\frac{1}{x_{1}}\right)=\frac{\pi}{2} .
$$

Hence we would have $y_{1}+y_{2} \geq \frac{\pi}{2}$, contrary to our assumptions. Similarly, if $x_{1}<0$, then $x_{1} x_{2} \geq 1$ would imply that

$$
x_{2} \leq \frac{1}{x_{1}}
$$

which in turn implies that

$$
\arctan \left(x_{1}\right)+\arctan \left(x_{2}\right) \leq \arctan \left(x_{1}\right)+\arctan \left(\frac{1}{x_{1}}\right)=-\frac{\pi}{2} .
$$

Hence we would have $y_{1}+y_{2} \leq \frac{\pi}{2}$, again contrary to our assumptions. Thus we must have $x_{1} x_{2}<1$. Moreover, suppose u is a number between $-x_{1}$ and x_{2}. If $x_{1}>0$, then

$$
x_{2}<\frac{1}{x_{1}}
$$

so

$$
u<\frac{1}{x_{1}} .
$$

If $x_{1}<0$, then

$$
x_{2}>\frac{1}{x_{1}}
$$

so

$$
u>\frac{1}{x_{1}}
$$

Now let

$$
x=\frac{x_{1}+x_{2}}{1-x_{1} x_{2}} .
$$

We want to show that

$$
\arctan (x)=\arctan \left(x_{1}\right)+\arctan \left(x_{2}\right)
$$

which will imply that

$$
\frac{\tan \left(y_{1}\right)+\tan \left(y_{2}\right)}{1-\tan \left(y_{1}\right) \tan \left(y_{2}\right)}=\tan \left(y_{1}+y_{2}\right) .
$$

We need to compute

$$
\arctan (x)=\arctan \left(\frac{x_{1}+x_{2}}{1-x_{1} x_{2}}\right)=\int_{0}^{\frac{x_{1}+x_{2}}{1-x_{1} x_{2}}} \frac{1}{1+t^{2}} d t
$$

Let

$$
t=\varphi(u)=\frac{x_{1}+u}{1-x_{1} u}
$$

where u varies between $-x_{1}$, where $t=0$, and x_{2}, where $t=x$. Now

$$
\varphi^{\prime}(u)=\frac{\left(1-x_{1} u\right)-\left(x_{1}+u\right)\left(-x_{1}\right)}{\left(1-x_{1} u\right)^{2}}=\frac{1+x_{1}^{2}}{\left(1-x_{1} u\right)^{2}}
$$

which is always positive, thus showing that φ is an increasing function, and

$$
\begin{aligned}
\frac{1}{1+t^{2}} & =\frac{1}{1+\left(\frac{x_{1}+u}{1-x_{1} u}\right)^{2}} \\
& =\frac{\left(1-x_{1} u\right)^{2}}{\left(1-x_{1} u\right)^{2}+\left(x_{1}+u\right)^{2}} \\
& =\frac{\left(1-x_{1} u\right)^{2}}{\left(1+x_{1}^{2}\right)\left(1+u^{2}\right)}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\arctan (x) & =\int_{-x_{1}}^{x_{2}} \frac{1}{1+u^{2}} d u \\
& =\int_{-x_{1}}^{0} \frac{1}{1+u^{2}} d u+\int_{0}^{x_{2}} \frac{1}{1+u^{2}} d u \\
& =-\int_{0}^{-x_{1}} \frac{1}{1+u^{2}} d u+\arctan \left(x_{2}\right) \\
& =-\arctan \left(-x_{1}\right)+\arctan \left(x_{2}\right) \\
& =\arctan \left(x_{1}\right)+\arctan \left(x_{2}\right)
\end{aligned}
$$

Now suppose $y_{1}+y_{2}>\frac{\pi}{2}$. Then $x_{1}>0, x_{2}>0$, and

$$
x_{2}>\frac{1}{x_{1}} .
$$

Note then that as u increases from $-x_{1}$ to $\frac{1}{x_{1}}, t$ increases from 0 to $+\infty$; and as u increases from $\frac{1}{x_{1}}$ to x_{2}, t increases from $-\infty$ to x. Hence we have

$$
\begin{aligned}
\arctan (x)+\pi & =\int_{0}^{x} \frac{1}{1+t^{2}} d t+\int_{-\infty}^{0} \frac{1}{1+t^{2}} d t+\int_{0}^{+\infty} \frac{1}{1+t^{2}} d t \\
& =\int_{-\infty}^{x} \frac{1}{1+t^{2}} d t+\int_{0}^{+\infty} \frac{1}{1+t^{2}} d t \\
& =\int_{\frac{1}{x_{1}}}^{x_{2}} \frac{1}{1+u^{2}} d u+\int_{-x_{1}}^{\frac{1}{x_{1}}} \frac{1}{1+u^{2}} d u \\
& =\int_{-x_{1}}^{x_{2}} \frac{1}{1+u^{2}} d u \\
& =\arctan \left(x_{2}\right)-\arctan \left(-x_{1}\right) \\
& =\arctan \left(x_{2}\right)+\arctan \left(x_{1}\right) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\tan \left(y_{1}+y_{2}\right) & =\tan \left(y_{1}+y_{2}-\pi\right)=\tan (\arctan (x)) \\
& =\frac{x_{1}+x_{2}}{1-x_{1} x_{2}} \\
& =\frac{\tan \left(y_{1}\right)+\tan \left(y_{2}\right)}{1-\tan \left(y_{1}\right) \tan \left(y_{2}\right)}
\end{aligned}
$$

The case when $x_{1}<0$ may be handled similarly; it then follows that the addition formula holds for all $y_{1}, y_{2} \in\left(-\frac{\pi}{2},-\frac{\pi}{2}\right)$. The case for arbitrary $y_{1}, y_{2} \in D$ with $y_{1}+y_{2} \in D$ then follows from the periodicity of the tangent function.
Proposition For any $x, y \in D$ with $x+y \in D$,

$$
\tan (x+y)=\frac{\tan (x)+\tan (y)}{1-\tan (x) \tan (y)}
$$

