Lecture 23: The Fundamental Theorem of Calculus

23.1 The fundamental theorem of calculus

The following result is called the fundamental theorem of calculus.
Theorem Suppose f is integrable on $[a, b]$ and F is continuous on $[a, b]$ and differentiable on (a, b) with $F^{\prime}(x)=f(x)$ for all $x \in(a, b)$. Then

$$
\int_{a}^{b} f=F(b)-F(a) .
$$

Proof Given $\epsilon>0$, let $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ be a partition of $[a, b]$ for which $U(f, P)-$ $L(f, P)<\epsilon$. For $i=1,2, \ldots, n$, let $t_{i} \in\left(x_{i-1}, x_{i}\right)$ be points for which

$$
F\left(x_{i}\right)-F\left(x_{i-1}\right)=f\left(t_{i}\right)\left(x_{i}-x_{i-1}\right) .
$$

Then

$$
\sum_{i=1}^{n} f\left(t_{i}\right)\left(x_{i}-x_{i-1}\right)=\sum_{i=1}^{n}\left(F\left(x_{i}\right)-F\left(x_{i-1}\right)\right)=F(b)-F(a) .
$$

But

$$
L(f, P) \leq \sum_{i=1}^{n} f\left(t_{i}\right)\left(x_{i}-x_{i-1}\right) \leq U(f, P)
$$

so

$$
\left|F(b)-F(a)-\int_{a}^{b} f\right|<\epsilon
$$

Since ϵ was arbitrary, we conclude that

$$
\int_{a}^{b} f=F(b)-F(a)
$$

The following result is known as integration by parts.
Proposition Suppose f and g are integrable on $[a, b]$ and F and G are continuous on $[a, b]$ and differentiable on (a, b) with $F^{\prime}(x)=f(x)$ and $G^{\prime}(x)=g(x)$ for all $x \in(a, b)$. Then

$$
\int_{a}^{b} F(x) g(x) d x=F(b) G(b)-F(a) G(a)-\int_{a}^{b} f(x) G(x) d x
$$

Proof By the fundamental theorem of calculus,

$$
\int_{a}^{b}(F(x) g(x)+f(x) G(x)) d x=F(b) G(b)-F(a) G(a)
$$

23.2 The other fundamental theorem of calculus

Proposition Suppose f is integrable on $[a, b]$ and $F:[a, b] \rightarrow \mathbb{R}$ is defined by

$$
F(x)=\int_{a}^{x} f(t) d t
$$

Then F is uniformly continuous on $[a, b]$.
Proof Let $\epsilon>0$ be given and let $M>0$ be such that $|f(x)| \leq M$ for all $x \in[a, b]$. Then for any $x, y \in[a, b]$ with $x<y$ and $y-x<\frac{\epsilon}{M}$,

$$
|F(y)-F(x)|=\left|\int_{x}^{y} f(t) d t\right| \leq M(y-x)<\epsilon
$$

Hence F is uniformly continuous on $[a, b]$.
The following theorem is also sometimes called the fundamental theorem of calculus.
Theorem Suppose f is integrable on $[a, b]$ and continuous at $u \in(a, b)$. If $F:[a, b] \rightarrow \mathbb{R}$ is defined by

$$
F(x)=\int_{a}^{x} f(t) d t
$$

then F is differentiable at u and $F^{\prime}(u)=f(u)$.
Proof Let $\epsilon>0$ be given and choose $\delta>0$ such that $|f(x)-f(u)|<\epsilon$ whenever $|x-u|<\delta$. Then if $0<h<\delta$, we have

$$
\left|\frac{F(u+h)-F(u)}{h}-f(u)\right|=\left|\frac{1}{h} \int_{u}^{u+h} f(t) d t-f(u)\right|=\left|\frac{1}{h} \int_{u}^{u+h}(f(t)-f(u)) d t\right|<\epsilon
$$

If $-\delta<h<0$, then

$$
\left|\frac{F(u+h)-F(u)}{h}-f(u)\right|=\left|\frac{1}{h} \int_{u+h}^{u} f(t) d t-f(u)\right|=\left|\frac{1}{h} \int_{u+h}^{u}(f(t)-f(u)) d t\right|<\epsilon
$$

Hence

$$
F^{\prime}(u)=\lim _{h \rightarrow 0} \frac{F(u+h)-F(u)}{h}=f(u) .
$$

Proposition If f is continuous on $[a, b]$, then there exists a function $F:[a, b] \rightarrow \mathbb{R}$ which is continuous on $[a, b]$ with $F^{\prime}(x)=f(x)$ for all $x \in(a, b)$.
Proof Let $F(x)=\int_{a}^{x} f(t) d t$.
Example If $g(x)=\int_{0}^{x} \sqrt{1+t^{4}} d t$, then $g^{\prime}(x)=\sqrt{1+x^{4}}$.
The result of the following proposition is called integration by substitution.

Proposition Suppose I is an open interval, $\varphi: I \rightarrow \mathbb{R},[a, b] \subset I$, and φ^{\prime} is continuous on $[a, b]$. If $f: \varphi([a, b]) \rightarrow \mathbb{R}$ is continuous, then

$$
\int_{\varphi(a)}^{\varphi(b)} f(u) d u=\int_{a}^{b} f(\varphi(x)) \varphi^{\prime}(x) d x
$$

Proof Suppose $\varphi(a) \leq \varphi(b)$ and let F be a function which is continuous on $[\varphi(a), \varphi(b)]$ with $F^{\prime}(u)=f(u)$ for every $u \in(\varphi(a), \varphi(b))$. Let $g=F \circ \varphi$. Then

$$
g^{\prime}(x)=F^{\prime}(\varphi(x)) \varphi^{\prime}(x)=f(\varphi(x)) \varphi^{\prime}(x),
$$

so

$$
\int_{a}^{b} f(\varphi(x)) \varphi^{\prime}(x) d x=g(b)-g(a)=F(\varphi(b))-F(\varphi(a))=\int_{\varphi(a)}^{\varphi(b)} f(u) d u
$$

If $\varphi(a)>\varphi(b)$, then

$$
\begin{aligned}
\int_{\varphi(a)}^{\varphi(b)} f(u) d u & =-\int_{\varphi(b)}^{\varphi(a)} f(u) d u \\
& =-(F(\varphi(a))-F(\varphi(b))) \\
& =F(\varphi(b))-F(\varphi(a)) \\
& =g(b)-g(a) \\
& =\int_{a}^{b} f(\varphi(x)) \varphi^{\prime}(x) d x
\end{aligned}
$$

Exercise 23.2.1

Evaluate $\int_{0}^{1} u \sqrt{u+1} d u$ using (1) integration by parts and (2) substitution.

Exercise 23.2.2

Suppose $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable on \mathbb{R} and periodic with period $1($ that is, $\varphi(x+1)=$ $\varphi(x)$ for every $x \in \mathbb{R})$. Show that for any continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$,

$$
\int_{0}^{1} f(\varphi(x)) \varphi^{\prime}(x) d x=0
$$

Exercise 23.2.3

Suppose f is continuous on $[a, b]$. Show that there exists a point $c \in[a, b]$ such that

$$
\int_{a}^{b} f=f(c)(b-a)
$$

This is the Integral Mean Value Theorem.

Exercise 23.2.4

Suppose f and g are continuous on $[a, b]$ and $g(x)>0$ for all $x \in[a, b]$. Show that there exists a point $c \in[a, b]$ such that

$$
\int_{a}^{b} f g=f(c) \int_{a}^{b} g
$$

This is the Generalized Integral Mean Value Theorem.

Exercise 23.2.5

Suppose f is integrable on $[a, b]$ for any $b>a$. If

$$
\lim _{b \rightarrow+\infty} \int_{a}^{b} f
$$

exists, then we define

$$
\int_{a}^{+\infty} f=\lim _{b \rightarrow+\infty} \int_{a}^{b} f
$$

Show that if $f(x) \geq 0$ for all $x \geq a, f(x) \leq g(x)$ for all $x \geq a$, and $\int_{a}^{+\infty} g$ exists, then $\int_{a}^{+\infty} f$ exists.

23.3 Taylor's theorem revisited

The following is another version of Taylor's theorem.
Theorem Suppose $f \in C^{(n+1)}(a, b), \alpha \in(a, b)$, and

$$
P_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}(\alpha)}{k!}(x-\alpha)^{k}
$$

Then, for any $x \in(a, b)$,

$$
f(x)=P_{n}(x)+\int_{\alpha}^{x} \frac{f^{(n+1)}(t)}{n!}(x-t)^{n} d t .
$$

Proof By the fundamental theorem of calculus, we have

$$
\int_{\alpha}^{x} f^{\prime}(t) d t=f(x)-f(\alpha)
$$

which implies that

$$
f(x)=f(\alpha)+\int_{\alpha}^{x} f^{\prime}(t) d t
$$

Hence the theorem holds for $n=0$. Suppose the result holds for $n=k-1$, that is,

$$
f(x)=P_{k-1}(x)+\int_{\alpha}^{x} \frac{f^{(k)}(t)}{(k-1)!}(x-t)^{k-1} d t
$$

Let $F(t)=f^{(k)}(t), F^{\prime}(t)=f^{(k+1)}(t), g(t)=\frac{(x-t)^{k-1}}{(k-1)!}$, and $G(t)=-\frac{(x-t)^{k}}{k!}$. Then

$$
\begin{aligned}
\int_{\alpha}^{x} \frac{f^{(k)}(t)}{(k-1)!}(x-t)^{k-1} d t & =\int_{\alpha}^{x} F(t) g(t) d t \\
& =F(x) G(x)-F(\alpha) G(\alpha)+\int_{\alpha}^{x} \frac{f^{(k+1)}(t)}{k!}(x-t)^{k} d t \\
& =\frac{f^{(k)}(\alpha)(x-\alpha)^{k}}{k!}+\int_{\alpha}^{x} \frac{f^{(k+1)}(t)}{k!}(x-t)^{k} d t
\end{aligned}
$$

Hence

$$
f(x)=P_{k}(x)+\int_{\alpha}^{x} \frac{f^{(k+1)}(t)}{k!}(x-t)^{k} d t
$$

and so the theorem holds for $n=k$.

Exercise 23.3.1

Under the conditions of Taylor's theorem as just stated, show that

$$
\int_{\alpha}^{x} \frac{f^{(n+1)}(t)}{n!}(x-t)^{n} d t=\frac{f^{(n+1)}(\gamma)}{n!}(x-\gamma)^{n}(x-\alpha)
$$

for some γ between α and x. This is called the Cauchy form of the remainder.

Exercise 23.3.2

Under the conditions of Taylor's theorem as just stated, show that

$$
\int_{\alpha}^{x} \frac{f^{(n+1)}(t)}{n!}(x-t)^{n} d t=\frac{f^{(n+1)}(\gamma)}{(n+1)!}(x-\alpha)^{n+1}
$$

for some γ between α and x. This is called the Lagrange form of the remainder. (Note that this is the form of the remainder we derived earlier, although under slightly more general assumptions.)

