Lecture 22: More Properties of Integrals

22.1 More Properties of integrals

Proposition If f is integrable on $[a, b]$ with $f(x) \geq 0$ for all $x \in[a, b]$, then

$$
\int_{a}^{b} f \geq 0
$$

Proof The result follow from the fact that $L(f, P) \geq 0$ for any partition P of $[a, b]$.
Proposition Suppose f and g are both integrable on $[a, b]$. If $f(x) \leq g(x)$ for all $x \in[a, b]$, then

$$
\int_{a}^{b} f \leq \int_{a}^{b} g
$$

Proof Since $g(x)-f(x) \geq 0$ for all $x \in[a, b]$, we have

$$
\int_{a}^{b} g-\int_{a}^{b} f=\int_{a}^{b}(g-f) \geq 0
$$

by the previous proposition.
Proposition Suppose f is integrable on $[a, b], m \in \mathbb{R}, M \in \mathbb{R}$, and $m \leq f(x) \leq M$ for all $x \in[a, b]$. Then

$$
m(b-a) \leq \int_{a}^{b} f \leq M(b-a)
$$

Proof It follows from the previous proposition that

$$
m(b-a)=\int_{a}^{b} m d x \leq \int_{a}^{b} f(x) d x \leq \int_{a}^{b} M d x=M(b-a)
$$

Exercise 22.1.1

Show that

$$
1 \leq \int_{-1}^{1} \frac{1}{1+x^{2}} d x \leq 2
$$

Exercise 22.1.2

Suppose f is continuous on $[0,1]$, differentiable on $(0,1), f(0)=0$, and $\left|f^{\prime}(x)\right| \leq 1$ for all $x \in(0,1)$. Show that

$$
-\frac{1}{2} \leq \int_{0}^{1} f \leq \frac{1}{2}
$$

Exercise 22.1.3

Suppose f is integrable on $[a, b]$ and define $F:(a, b) \rightarrow \mathbb{R}$ by

$$
F(x)=\int_{a}^{x} f
$$

Show that if $x, y \in(a, b), x<y$, then there exists $\alpha \in \mathbb{R}$ such that

$$
|F(y)-F(x)| \leq \alpha(y-x) .
$$

Proposition Suppose g is integrable on $[a, b], g([a, b]) \subset[c, d]$, and $f:[c, d] \rightarrow \mathbb{R}$ is continuous. If $h=f \circ g$, then h is integrable on $[a, b]$.

Proof Let $\epsilon>0$ be given. Let

$$
K>\sup \{f(x): x \in[c, d]\}-\inf \{f(x): x \in[c, d]\}
$$

and choose $\delta>0$ so that $\delta<\epsilon$ and

$$
|f(x)-f(y)|<\frac{\epsilon}{2(b-a)}
$$

whenever $|x-y|<\delta$. Let $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ be a a partition of $[a, b]$ such that

$$
U(g, P)-L(g, P)<\frac{\delta^{2}}{2 K}
$$

For $i=1,2, \ldots, n$, let

$$
\begin{aligned}
m_{i} & =\inf \left\{g(x): x_{i-1} \leq x \leq x_{i}\right\}, \\
M_{i} & =\sup \left\{g(x): x_{i-1} \leq x \leq x_{i}\right\}, \\
w_{i} & =\inf \left\{h(x): x_{i-1} \leq x \leq x_{i}\right\},
\end{aligned}
$$

and

$$
W_{i}=\sup \left\{h(x): x_{i-1} \leq x \leq x_{i}\right\} .
$$

Finally, let

$$
I=\left\{i: i \in \mathbb{Z}, 1 \leq i \leq n, M_{i}-m_{i}<\delta\right\}
$$

and

$$
J=\left\{i: i \in \mathbb{Z}, 1 \leq i \leq n, M_{i}-m_{i} \geq \delta\right\} .
$$

Note that

$$
\begin{aligned}
\delta \sum_{i \in J}\left(x_{i}-x_{i-1}\right) & \leq \sum_{i \in J}\left(M_{i}-m_{i}\right)\left(x_{i}-x_{i-1}\right) \\
& \leq \sum_{i=1}^{n}\left(M_{i}-m_{i}\right)\left(x_{i}-x_{i-1}\right) \\
& <\frac{\delta^{2}}{2 K}
\end{aligned}
$$

from which it follows that

$$
\sum_{i \in J}\left(x_{i}-x_{i-1}\right)<\frac{\delta}{2 K}
$$

Then

$$
\begin{aligned}
U(h, P)-L(h, P) & =\sum_{i \in I}\left(W_{i}-w_{i}\right)\left(x_{i}-x_{i-1}\right)+\sum_{i \in J}\left(W_{i}-w_{i}\right)\left(x_{i}-x i-1\right) \\
& <\frac{\epsilon}{2(b-a)} \sum_{i \in I}\left(x_{i}-x_{i-1}\right)+K \sum_{i \in J}\left(x_{i}-x_{i-1}\right) \\
& <\frac{\epsilon}{2}+\frac{\delta}{2}<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon .
\end{aligned}
$$

Thus h is integrable on $[a, b]$.
Proposition Suppose f and g are both integrable on $[a, b]$. Then $f g$ is integrable on $[a, b]$.

Proof Since f and g are both integrable, then both $f+g$ and $f-g$ are integrable. Hence, by the previous proposition, both $(f+g)^{2}$ and $(f-g)^{2}$ are integrable. Thus

$$
\left.\frac{1}{4}\left((f+g)^{2}-(f-g)^{2}\right)\right)=f g
$$

is integrable on $[a, b]$.
Proposition Suppose f is integrable on $[a, b]$. Then $|f|$ is integrable on $[a, b]$ and

$$
\left|\int_{a}^{b} f\right| \leq \int_{a}^{b}|f|
$$

Proof The integrabilty of $|f|$ follows from a previous proposition. The inequality follows from the fact that

$$
-|f(x)| \leq f(x) \leq|f(x)|
$$

for all $x \in[a, b]$. Hence

$$
-\int_{a}^{b}|f| \leq \int_{a}^{b} f \leq \int_{a}^{b}|f|
$$

from which the result follows.

Exercise 22.1.4

Either prove the following statement or show it is false by finding a counterexample: If $f:[0,1] \rightarrow \mathbb{R}$ is bounded and f^{2} is integrable on $[0,1]$, then f is integrable on $[0,1]$.

22.2 Extended definitions

Definition If f is integrable on $[a, b]$, then we define

$$
\int_{b}^{a} f=-\int_{a}^{b} f
$$

Moreover, if f is a function defined at a point $a \in \mathbb{R}$, we define $\int_{a}^{a} f=0$.
Exercise 22.2.1
Suppose f is integrable on a closed interval containing the points a, b, and c. Show that

$$
\int_{a}^{b} f=\int_{a}^{c} f+\int_{c}^{b} f
$$

