Lecture 21: Properties of Integrals

21.1 Properties of integrals

Exercise 21.1.1

Suppose $f: D \rightarrow \mathbb{R}$ and $g: D \rightarrow \mathbb{R}$. Show that

$$
\sup \{f(x)+g(x): x \in D\} \leq \sup \{f(x): x \in D\}+\sup \{g(x): x \in D\}
$$

and

$$
\inf \{f(x)+g(x): x \in D\} \geq \inf \{f(x): x \in D\}+\inf \{g(x): x \in D\}
$$

Find examples for which the inequalities are strict.
Proposition Suppose f and g are both integrable on $[a, b]$. Then $f+g$ is integrable on $[a, b]$ and

$$
\int_{a}^{b}(f+g)=\int_{a}^{b} f+\int_{a}^{b} g
$$

Proof Given $\epsilon>0$, let P_{1} and P_{2} be partitions of $[a, b]$ with

$$
U\left(f, P_{1}\right)-L\left(f, P_{1}\right)<\frac{\epsilon}{2}
$$

and

$$
U\left(g, P_{2}\right)-L\left(g, P_{2}\right)<\frac{\epsilon}{2}
$$

Let $P=P_{1} \cup P_{2}$. By the previous exercise,

$$
U(f+g, P) \leq U(f, P)+U(g, P)
$$

and

$$
L(f+g, P) \geq L(f, P)+L(g, P)
$$

Hence

$$
\begin{aligned}
U(f+g, P)-L(f+g, P) & \leq(U(f, P)+U(g, P))-(L(f, P)+L(g, P)) \\
& =(U(f, P)-L(f, P))+(U(g, P)-L(g, P)) \\
& \leq\left(U\left(f, P_{1}\right)-L\left(f, P_{1}\right)\right)+\left(U\left(g, P_{2}\right)-L\left(g_{2} P\right)\right) \\
& <\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
\end{aligned}
$$

Hence $f+g$ is integrable on $[a, b]$. Moreover,

$$
\begin{aligned}
\int_{a}^{b}(f+g) & \leq U(f+g, P) \\
& \leq U(f, P)+U(g, P) \\
& \leq\left(\int_{a}^{b} f+\frac{\epsilon}{2}\right)+\left(\int_{a}^{b} g+\frac{\epsilon}{2}\right) \\
& =\int_{a}^{b} f+\int_{a}^{b} g+\epsilon
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{a}^{b}(f+g) & \geq L(f+g, P) \\
& \geq L(f, P)+L(g, P) \\
& \geq\left(\int_{a}^{b} f-\frac{\epsilon}{2}\right)+\left(\int_{a}^{b} g-\frac{\epsilon}{2}\right) \\
& =\int_{a}^{b} f+\int_{a}^{b} g-\epsilon
\end{aligned}
$$

Since the preceding inequalities hold for any $\epsilon>0$, it follows that

$$
\int_{a}^{b}(f+g)=\int_{a}^{b} f+\int_{a}^{b} g
$$

Exercise 21.1.2

Suppose $f:[a, b] \rightarrow \mathbb{R}$ and $g:[a, b] \rightarrow \mathbb{R}$ are both bounded. Show that

$$
\overline{\int_{a}^{b}}(f+g) \leq \overline{\int_{a}^{b}} f+\overline{\int_{a}^{b}} g .
$$

Find an example for which the inequality is strict.

Exercise 21.1.3

Find an example to show that $f+g$ may be integrable on $[a, b]$ even though neither f nor g is integrable on $[a, b]$.
Proposition If f is integrable on $[a, b]$ and $\alpha \in \mathbb{R}$, then αf is integrable on $[a, b]$ and

$$
\int_{a}^{b} \alpha f=\alpha \int_{a}^{b} f
$$

Exercise 21.1.4

Prove the previous proposition.
Proposition Suppose $f:[a, b] \rightarrow \mathbb{R}$ is bounded and $c \in(a, b)$. Then f is integrable on $[a, b]$ if and only if f is integrable on both $[a, c]$ and $[c, b]$.
Proof Suppose f is integrable on $[a, b]$. Given $\epsilon>0$, let Q be a partition of $[a, b]$ such that

$$
U(f, Q)-L(f, Q)<\epsilon
$$

Let $P=Q \cup\{c\}, P_{1}=P \cap[a, c]$, and $P_{2} \cap[c, b]$. Then

$$
\begin{aligned}
\left(U\left(f, P_{1}\right)-L\left(f, P_{1}\right)\right)+\left(U\left(f, P_{2}\right)-L\left(f, P_{2}\right)\right)= & \left(U\left(f, P_{1}\right)+U\left(f, P_{2}\right)\right) \\
& \quad-\left(L\left(f, P_{1}\right)+L\left(f, P_{2}\right)\right) \\
= & U(f, P)-L(f, P) \\
\leq & U(f, Q)-L(f, Q) \\
< & \epsilon
\end{aligned}
$$

Thus we must have both

$$
U\left(f, P_{1}\right)-L\left(f, P_{1}\right)<\epsilon
$$

and

$$
U\left(f, P_{2}\right)-L\left(f, P_{2}\right)<\epsilon .
$$

Hence f is integrable on both $[a, c]$ and $[c, b]$.
Now suppose f is integrable on both $[a, c]$ and $[c, b]$. Given $\epsilon>0$, let P_{1} and P_{2} be partitions of $[a, c]$ and $[c, b]$, respectively, such that

$$
U\left(f, P_{1}\right)-L\left(f, P_{1}\right)<\frac{\epsilon}{2}
$$

and

$$
U\left(f, P_{2}\right)-L\left(f, P_{2}\right)<\frac{\epsilon}{2}
$$

Let $P=P_{1} \cup P_{2}$. Then P is a partition of $[a, b]$ and

$$
\begin{aligned}
U(f, P)-L(f, P) & =\left(U\left(f, P_{1}\right)+U\left(f, P_{2}\right)\right)-\left(L\left(f, P_{1}\right)+L\left(f, P_{2}\right)\right) \\
& =\left(U\left(f, P_{1}\right)-L\left(f, P_{1}\right)\right)+\left(U\left(f, P_{2}\right)-L\left(f, P_{2}\right)\right) \\
& <\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon .
\end{aligned}
$$

Thus f is integrable on $[a, b]$.
Proposition Suppose f is integrable on $[a, b]$ and $c \in(a, b)$. Then

$$
\int_{a}^{b} f=\int_{a}^{c} f+\int_{c}^{b} f
$$

Proof If P and Q are partitions of $[a, c]$ and $[c, b]$, respectively, then

$$
U(f, P)+U(f, Q)=U(f, P \cup Q) \geq \int_{a}^{b} f
$$

Thus

$$
U(f, P) \geq \int_{a}^{b} f-U(f, Q)
$$

so

$$
\int_{a}^{c} f=\overline{\int_{a}^{c}} f \geq \int_{a}^{b} f-U(f, Q)
$$

Hence

$$
U(f, Q) \geq \int_{a}^{b} f-\int_{a}^{c} f
$$

so

$$
\int_{c}^{b} f=\overline{\int_{c}^{b}} f \geq \int_{a}^{b} f-\int_{a}^{c} f
$$

Thus

$$
\int_{a}^{c} f+\int_{c}^{b} f \geq \int_{a}^{b} f
$$

Similarly, if P and Q are partitions of $[a, c]$ and $[c, b]$, respectively, then

$$
L(f, P)+L(f, Q)=L(f, P \cup Q) \leq \int_{a}^{b} f
$$

Thus

$$
L(f, P) \leq \int_{a}^{b} f-L(f, Q)
$$

so

$$
\int_{a}^{c} f=\underline{\int_{a}^{c}} f \leq \int_{a}^{b} f-L(f, Q)
$$

Hence

$$
L(f, Q) \leq \int_{a}^{b} f-\int_{a}^{c} f
$$

so

$$
\int_{c}^{b} f=\underline{\int_{c}^{b}} f \leq \int_{a}^{b} f-\int_{a}^{c} f
$$

Thus

$$
\int_{a}^{c} f+\int_{c}^{b} f \leq \int_{a}^{b} f
$$

Hence

$$
\int_{a}^{c} f+\int_{c}^{b} f=\int_{a}^{b} f
$$

Exercise 21.1.5
Suppose $f:[a, b] \rightarrow \mathbb{R}$ is bounded and B is a finite subset of (a, b). Show that if f is continuous on $[a, b] \backslash B$, then f is integrable on $[a, b]$.

