Lecture 20: Integrability Conditions

20.1 Integrability conditions

Proposition If $f : [a, b] \to \mathbb{R}$ is monotonic, then f is integrable on [a, b]. **Proof** Suppose f is nondecreasing. Given $\epsilon > 0$, let $n \in Z^+$ be large enough that

$$\frac{(f(b) - f(a))(b - a)}{n} < \epsilon.$$

For i = 0, 1, ..., n, let

$$x_i = a + \frac{(b-a)i}{n}.$$

Let $P = \{x_0, x_1, ..., x_n\}$. Then

$$U(f, P) - L(f, P) = \sum_{i=1}^{n} f(x_i)(x_i - x_{i-1}) - \sum_{i=1}^{n} f(x_{i-1})(x_i - x_{i-1})$$

$$= \sum_{i=1}^{n} (f(x_i) - f(x_{i-1})) \frac{b-a}{n}$$

$$= \frac{b-a}{n} ((f(x_1) - f(x_0)) + (f(x_2) - f(x_1)) + \cdots + (f(x_{n-1}) - f(x_{n-2})) + (f(x_n) - f(x_{n-1})))$$

$$= \frac{b-a}{n} (f(b) - f(a)) < \epsilon.$$

Hence f is integrable on [a, b].

Example Let $\varphi : \mathbb{Q} \cap [0,1] \to \mathbb{Z}^+$ be a one-to-one correspondence. Define $f : [0,1] \to \mathbb{R}$ by

$$f(x) = \sum_{\substack{q \in \mathbb{Q} \cap [0,1]\\q \le x}} \frac{1}{2^{\varphi(q)}}.$$

Then f is increasing on [0, 1], and hence integrable on [0, 1].

Proposition If $f : [a, b] \to \mathbb{R}$ is continuous, then f is integrable on [a, b]. **Proof** Given $\epsilon > 0$, let

$$\gamma = \frac{\epsilon}{b-a}.$$

Since f is uniformly continuous on [a, b], we may choose $\delta > 0$ such that

 $|f(x) - f(y)| < \gamma$

whenever $|x - y| < \delta$. Let $P = \{x_0, x_1, \dots, x_n\}$ be a partition with

$$\sup\{|x_i - x_{i-1}| : i = 1, 2, \dots, n\} < \delta.$$

If, for i = 1, 2, ..., n,

$$m_i = \inf\{f(x) : x_{i-1} \le x \le x_i\}$$

and

$$M_i = \sup\{f(x) : x_{i-1} \le x \le x_i\},\$$

then $M_i - m_i < \gamma$. Hence

$$U(f,P) - L(f,P) = \sum_{i=1}^{n} M_i(x_i - x_{i-1}) - \sum_{i=1}^{n} m_i(x_i - x_{i-1})$$
$$= \sum_{i=1}^{n} (M_i - m_i)(x_i - x_{i-1})$$
$$< \gamma \sum_{i=1}^{n} (x_i - x_{i-1})$$
$$= \gamma(b - a) = \epsilon.$$

Thus f is integrable on [a, b].

Exercise 20.1.1

Suppose $f : [a,b] \to \mathbb{R}$ is bounded and let $c \in [a,b]$. Show that if f is continuous on $[a,b] \setminus \{c\}$, then f is integrable on [a,b].

Exercise 20.1.2

Suppose f is continuous on [a,b] with $f(x) \ge 0$ for all $x \in [a,b]$. Show that if $\int_a^b f = 0$, then f(x) = 0 for all $x \in [a,b]$.

Exercise 20.1.3

Suppose f is continuous on [a, b]. For $i = 0, 1, ..., n, n \in \mathbb{Z}^+$, let

$$x_i = a + \frac{(b-a)i}{n}$$

and, for i = 1, 2, ..., n, let $c_i \in [x_{i-1}, x_i]$. Show that

$$\int_{a}^{b} f = \lim_{n \to \infty} \frac{b-a}{n} \sum_{i=1}^{n} f(c_i).$$

(The approximation

$$\int_{a}^{b} f \approx \frac{b-a}{n} \sum_{i=1}^{n} f(c_i)$$

is called the right-hand rule approximation if $c_i = x_i$, the left-hand rule approximation if $c_i = x_{i-1}$, and the midpoint rule approximation if

$$c_i = \frac{x_{i-1} + x_i}{2}.$$

These are basic ingredients in creating numerical approximations to integrals.)