Lecture 20: Integrability Conditions

20.1 Integrability conditions

Proposition If $f:[a, b] \rightarrow \mathbb{R}$ is monotonic, then f is integrable on $[a, b]$.
Proof Suppose f is nondecreasing. Given $\epsilon>0$, let $n \in Z^{+}$be large enough that

$$
\frac{(f(b)-f(a))(b-a)}{n}<\epsilon .
$$

For $i=0,1, \ldots, n$, let

$$
x_{i}=a+\frac{(b-a) i}{n}
$$

Let $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$. Then

$$
\begin{aligned}
& U(f, P)-L(f, P)= \sum_{i=1}^{n} f\left(x_{i}\right)\left(x_{i}-x_{i-1}\right)-\sum_{i=1}^{n} f\left(x_{i-1}\right)\left(x_{i}-x_{i-1}\right) \\
&= \sum_{i=1}^{n}\left(f\left(x_{i}\right)-f\left(x_{i-1}\right)\right) \frac{b-a}{n} \\
&= \frac{b-a}{n}\left(\left(f\left(x_{1}\right)-f\left(x_{0}\right)\right)+\left(f\left(x_{2}\right)-f\left(x_{1}\right)\right)+\cdots\right. \\
&\left.\quad \quad+\left(f\left(x_{n-1}\right)-f\left(x_{n-2}\right)\right)+\left(f\left(x_{n}\right)-f\left(x_{n-1}\right)\right)\right) \\
&= \frac{b-a}{n}(f(b)-f(a))<\epsilon .
\end{aligned}
$$

Hence f is integrable on $[a, b]$.
Example Let $\varphi: \mathbb{Q} \cap[0,1] \rightarrow \mathbb{Z}^{+}$be a one-to-one correspondence. Define $f:[0,1] \rightarrow \mathbb{R}$ by

$$
f(x)=\sum_{\substack{q \in \underset{\begin{subarray}{c}{\mathbb{Q} \\
q \leq x, 1]} }}{ }}\end{subarray}} \frac{1}{2^{\varphi(q)}}
$$

Then f is increasing on $[0,1]$, and hence integrable on $[0,1]$.
Proposition If $f:[a, b] \rightarrow \mathbb{R}$ is continuous, then f is integrable on $[a, b]$.
Proof Given $\epsilon>0$, let

$$
\gamma=\frac{\epsilon}{b-a} .
$$

Since f is uniformly continuous on $[a, b]$, we may choose $\delta>0$ such that

$$
|f(x)-f(y)|<\gamma
$$

whenever $|x-y|<\delta$. Let $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ be a partition with

$$
\sup \left\{\left|x_{i}-x_{i-1}\right|: i=1,2, \ldots, n\right\}<\delta
$$

If, for $i=1,2, \ldots, n$,

$$
m_{i}=\inf \left\{f(x): x_{i-1} \leq x \leq x_{i}\right\}
$$

and

$$
M_{i}=\sup \left\{f(x): x_{i-1} \leq x \leq x_{i}\right\}
$$

then $M_{i}-m_{i}<\gamma$. Hence

$$
\begin{aligned}
U(f, P)-L(f, P) & =\sum_{i=1}^{n} M_{i}\left(x_{i}-x_{i-1}\right)-\sum_{i=1}^{n} m_{i}\left(x_{i}-x_{i-1}\right) \\
& =\sum_{i=1}^{n}\left(M_{i}-m_{i}\right)\left(x_{i}-x_{i-1}\right) \\
& <\gamma \sum_{i=1}^{n}\left(x_{i}-x_{i-1}\right) \\
& =\gamma(b-a)=\epsilon .
\end{aligned}
$$

Thus f is integrable on $[a, b]$.

Exercise 20.1.1

Suppose $f:[a, b] \rightarrow \mathbb{R}$ is bounded and let $c \in[a, b]$. Show that if f is continuous on $[a, b] \backslash\{c\}$, then f is integrable on $[a, b]$.

Exercise 20.1.2

Suppose f is continuous on $[a, b]$ with $f(x) \geq 0$ for all $x \in[a, b]$. Show that if $\int_{a}^{b} f=0$, then $f(x)=0$ for all $x \in[a, b]$.

Exercise 20.1.3
Suppose f is continuous on $[a, b]$. For $i=0,1, \ldots, n, n \in \mathbb{Z}^{+}$, let

$$
x_{i}=a+\frac{(b-a) i}{n}
$$

and, for $i=1,2, \ldots, n$, let $c_{i} \in\left[x_{i-1}, x_{i}\right]$. Show that

$$
\int_{a}^{b} f=\lim _{n \rightarrow \infty} \frac{b-a}{n} \sum_{i=1}^{n} f\left(c_{i}\right) .
$$

(The approximation

$$
\int_{a}^{b} f \approx \frac{b-a}{n} \sum_{i=1}^{n} f\left(c_{i}\right)
$$

is called the right-hand rule approximation if $c_{i}=x_{i}$, the left-hand rule approximation if $c_{i}=x_{i-1}$, and the midpoint rule approximation if

$$
c_{i}=\frac{x_{i-1}+x_{i}}{2} .
$$

These are basic ingredients in creating numerical approximations to integrals.)

