
Lecture 2: Functions and Rational Numbers

2.1 Functions

If A and B are sets, a relation R � A �B is called a function with domain A if for every
a 2 A there exists one, and only one, b 2 B such that (a; b) 2 R. We typically indicate
such a relation with the notation f : A! B, and write f(a) = b to indicate that (a; b) 2 R.
The set of all b 2 B such that f(a) = b for some a 2 A is called the range of f .

We say f : A ! B is one-to-one if for every b in the range of f there exists a unique
a 2 A such that f(a) = b. We say f is onto if for every b 2 B there exists at least one
a 2 A such that f(a) = b. For example, the function f :Z+ !Z

+ de�ned by f(z) = z2 is
one-to-one, but not onto, whereas the function f : Z!Zde�ned by f(z) = z + 1 is both
one-to-one and onto.

Given two functions, f : A ! B and g : B ! C, we de�ne the composition, denoted
f � g : A! C, to be the function de�ned by f � g(a) = f(g(a)).

If f : A! B is both one-to-one and onto, then we may de�ne a function f�1 : B ! A
by requiring f�1(b) = a if and only if f(a) = b. Note that his implies that f � f�1(b) = b
for all b 2 B and f�1 � f(a) = a for all a 2 A. We call f�1 the inverse of f .

Given any collection of nonempty sets, fA�g, � 2 I, we assume the existence of a
function � : I ! B, B =

S
�2I A�, with the property that �(�) 2 A�. Such a function is

called a choice function and the assumption that choice functions always exist is known as
the Axiom of Choice.

2.2 Rational numbers: �eld properties

Let P = f(p; q) : p; q 2 Z; q 6= 0g. We de�ne an equivalence relation on P by saying
(p; q) � (s; t) if pt = qs.

Exercise 2.2.1

Show that the relation as just de�ned is indeed an equivalence relation.

We will denote the equivalence class of (p; q) 2 P by p=q, or p

q
. The set of all equivalence

classes of P is called the rational numbers, which we denote by Q. If p 2Z, we will denote
the equivalence class of (p; 1) by p; that is, we let

p

1
= p:

In this way, we may think of Zas a subset of Q.
We wish to de�ne operations of addition and multiplication on elements of Q. We begin

by de�ning operations on the elements of P . Namely, given (p; q) 2 P and (s; t) 2 P , de�ne

(p; q) � (s; t) = (pt+ sq; qt)

and
(p; q) 
 (s; t) = (ps; qt):

Now suppose (p; q) � (a; b) and (s; t) � (c; d). It follows that (p; q)� (s; t) � (a; b)� (c; d),
that is, (pt+ sq; qt) � (ad + cb; bd), since

(pt + sq)bd = pbtd + sdqb = qatd + tcqb = (ad + cb)qt:
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Moreover, (p; q) 
 (s; t) � (a; b) � (c; d), that is, (ps; qt) � (ac; bd), since

psbd = pbsd = qatc = qtac:

This shows that the equivalence class of a sum or product depends only on the equivalence
classes of the elements being added or multiplied. Thus we may de�ne addition and
multiplication on Q by

p

q
+

s

t
=

pt+ sq

qt

and
p

q
�

s

t
=

ps

qt
;

and the results will not depend on which representatives we choose for each equivalence
class. Of course, multiplication is often denoted using juxtaposition, that is,

p

q
�

s

t
=

p

q

s

t
;

and repeated multiplication may be denoted by exponentiation, that is, an, a 2 Q and
n 2Z+, represents the product of a with itself n times.

Note that if (p; q) 2 P , then (�p; q) � (p;�q). Hence, if a = p

q
2 Q, then we let

�a =
�p

q
=

p

�q
:

For any a; b 2 Q, we will write a � b to denote a+ (�b).
If a = p

q
2 Q with p 6= 0, then we let

a�1 =
q

p
:

Moreover, we will write
1

a
= a�1;

1

an
= a�n

for any n 2Z+, and, for any b 2 Q,

b

a
= ba�1:

It is now easy to show that

(1) a+ b = b+ a for all a; b 2 Q;
(2) (a+ b) + c = a+ (b + c) for all a; b; c 2 Q;
(3) ab = ba for all a; b 2 Q;
(4) (ab)c = a(bc) for all a; b; c 2 Q;
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(5) a(b + c) = ab + ac for all a; b; c 2 Q;
(6) a+ 0 = a for all a 2 Q;
(7) a+ (�a) = 0 for all a 2 Q;
(8) 1a = a for all a 2 Q;
(9) if a 2 Q, a 6= 0, then aa�1 = 1.

Taken together, these statements imply that Q is a �eld.

2.3 Rational numbers: order and metric properties

We say a rational number a is positive if there exist p; q 2Z+ such that a = p

q
. We denote

the set of all positive elements of Q by Q+.
Given a; b 2 Q, we say a is less than b, or, equivalently, b is greater than a, denoted

either by a < b or b > a, if b� a is positive. In particular, a > 0 if and only if a is positive.
If a < 0, we say a is negative. We write a � b, or, equivalently, b � a if either a < b or
a = b.

Exercise 2.3.1

Show that for any a 2 Q, one and only one of the following must hold: (a) a < 0, (b)
a = 0, (c) a > 0.

Exercise 2.3.2

Show that if a; b 2 Q+, then a + b 2 Q+.

Exercise 2.3.3

(a) Show that for any a; b 2 Q, one and only one of the following must hold: (a) a < b,
(b) a = b, (c) a > b.

(b) Show that if a; b; c 2 Q with a < b and b < c, then a < c.
(c) Show that if a; b; c 2 Q with a < b, then a+ c < b+ c.
(d) Show that if a; b 2 Q with a > 0 and b > 0, then ab > 0.

As a consequence of Exercise 2.3.3, we say Q is an ordered �eld.

Exercise 2.3.4

Show that if a; b 2 Q with a > 0 and b < 0, then ab < 0.

Exercise 2.3.5

Show that if a; b; c 2 Q with a < b, then ac < bc if c > 0 and ac > bc if c < 0.

Exercise 2.3.6

Show that if a; b 2 Q with a < b, then a < a+b
2

< b.

For any a 2 Q, we call

jaj =

�
a; if a � 0,
�a; if a < 0,

the absolute value of a.

Exercise 2.3.7

Show that for any a 2 Q, �jaj � a � jaj.

Proposition For any a; b 2 Q, ja + bj � jaj+ jbj.
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Proof If a + b � 0, then

jaj+ jbj � ja+ bj = jaj + jbj � a � b = (jaj � a) + (jbj � b):

Both of the terms on the right are nonnegative by Exercise 2.3.7. Hence the sum is
nonnegative and the proposition follows. If a+ b < 0, then

jaj+ jbj � ja+ bj = jaj + jbj+ a + b = (jaj + a) + (jbj + b):

Again, both of the terms on the right are nonnegative by Exercise 2.3.7. Hence the sum is
nonegatvie and the proposition follows.

It is now easy to show that the absolute value satis�es

(1) ja� bj � 0 for all a; b 2 Q, with ja� bj = 0 if and only if a = b,
(2) ja� bj = jb � aj for all a; b 2 Q,
(3) ja� bj � ja � cj+ jc� bj for all a; b; c 2 Q.

Note that the last statement, known as the triangle inequality, follows from writing

a� b = (a � c) + (c� b)

and applying the previous proposition. These properties show that the function

d(a; b) = ja � bj

is a metric, and we will call ja� bj the distance from a to b.
Suppose a; b 2 Q+ with a < b and let p; q; r; s 2 Z+ such that a = p

q
and b = r

s
. For

any n 2Z+, we have

na� b = n
p

q
�

r

s
=

nps� rq

qs
:

If we choose n large enough so that nps�rq > 0, it follows that na�b > 0, that is, na > b.
We say that the ordered �eld Q is archimedean. Note that it also follows that we may
choose n large enough to ensure that b

n
< a.


