Lecture 18: Taylor's Theorem

18.1 Derivatives of higher order

Definition Suppose f is differentiable on an open interval I and f^{\prime} is differentiable at $a \in I$. We call the derivative of f^{\prime} at a the second derivative of f at a, which we denote $f^{\prime \prime}(a)$.

By continued differentiation, we may define the higher order derivatives $f^{\prime \prime \prime}, f^{\prime \prime \prime \prime}$, and so on. In general, for any integer $n, n \geq 0$, we let $f^{(n)}$ denote the nth derivative of f, where $f^{(0)}$ denotes f.
Exercise 18.1.1
Suppose $D \subset \mathbb{R}, a$ is an interior point of $D, f: D \rightarrow \mathbb{R}$, and $f^{\prime \prime}(a)$ exists. Show that

$$
\lim _{h \rightarrow 0} \frac{f(a+h)+f(a-h)-2 f(a)}{h^{2}}=f^{\prime \prime}(a)
$$

Find an example to illustrate that this limit may exist even if $f^{\prime \prime}(a)$ does not exist.
For any open interval (a, b), where a and b are extended real numbers, we let $C^{(n)}(a, b)$ denote the set of all functions f with the property that each of $f, f^{(1)}, f^{(2)}, \ldots, f^{(n)}$ is defined and continuous on (a, b).

18.2 Taylor's theorem

The following result is known as Taylor's theorem.
Theorem Suppose $f \in C^{(n)}(a, b)$ and $f^{(n)}$ is differentiable on (a, b). Let $\alpha, \beta \in(a, b)$ with $\alpha \neq \beta$, and let

$$
P(x)=f(\alpha)+f^{\prime}(\alpha)(x-\alpha)+\frac{f^{\prime \prime}(\alpha)}{2}(x-\alpha)^{2}+\cdots+\frac{f^{(n)}(\alpha)}{n!}(x-\alpha)^{n}=\sum_{k=0}^{n} \frac{f^{(k)}(\alpha)}{k!}(x-\alpha)^{k} .
$$

Then there exists a point γ between α and β such that

$$
f(\beta)=P(\beta)+\frac{f^{(n+1)}(\gamma)}{(n+1)!}(\beta-\alpha)^{n+1}
$$

Proof First note that $P^{(k)}(\alpha)=f^{(k)}(\alpha)$ for $k=0,1, \ldots, n$. Let

$$
M=\frac{f(\beta)-P(\beta)}{(\beta-\alpha)^{n+1}}
$$

Then

$$
f(\beta)=P(\beta)+M(\beta-\alpha)^{n+1} .
$$

We need to show that

$$
M=\frac{f^{(n+1)}(\gamma)}{(n+1)!}
$$

for some γ between α and β. Let

$$
g(x)=f(x)-P(x)-M(x-\alpha)^{n+1} .
$$

Then, for $k=0,1, \ldots, n$,

$$
g^{(k)}(\alpha)=f^{(k)}(\alpha)-P^{(k)}(\alpha)=0
$$

Now $g(\beta)=0$, so, by Rolle's theorem, there exists γ_{1} between α and β such that $g^{\prime}\left(\gamma_{1}\right)=0$. Using Rolle's theorem again, we see that there exists γ_{2} between α and γ_{1} such that $g^{\prime \prime}\left(\gamma_{2}\right)=0$. Continuing for $n+1$ steps, we find γ_{n+1} between α and γ_{n} (and hence between α and β) such that $g^{(n+1)}\left(\gamma_{n+1}\right)=0$. Hence

$$
0=g^{(n+1)}\left(\gamma_{n+1}\right)=f^{(n+1)}\left(\gamma_{n+1}\right)-(n+1)!M
$$

Letting $\gamma=\gamma_{n+1}$, we have

$$
M=\frac{f^{(n+1)}(\gamma)}{(n+1)!}
$$

as required.
The polynomial P in the statement of Taylor's theorem is called the Taylor polynomial of order n for f at α.

Example Let $f(x)=\sqrt{x}$. Then the 4 th order Taylor polynomial for f at 1 is

$$
P(x)=1+\frac{1}{2}(x-1)-\frac{1}{8}(x-1)^{2}+\frac{1}{16}(x-1)^{3}-\frac{5}{128}(x-1)^{4} .
$$

By Taylor's theorem, for any $x>0$ there exists γ between 1 and x such that

$$
\sqrt{x}=P(x)+\frac{105}{(32)(5!) \gamma^{\frac{9}{2}}}(x-1)^{5}=P(x)+\frac{7}{256 \gamma^{\frac{9}{2}}}(x-1)^{5} .
$$

For example,

$$
\sqrt{1.2}=P(1.2)+\frac{7}{256 \gamma^{\frac{9}{2}}}(1.2-1)^{5}=P(1.2)+\frac{7}{256 \gamma^{\frac{9}{2}}}(0.2)^{5}=P(1.2)+\frac{7}{800000 \gamma^{\frac{9}{2}}},
$$

for some γ with $1<\gamma<1.2$. Hence $P(1.2)$ underestimates $\sqrt{1.2}$ by a value which is no larger than $\frac{7}{800000}$. Note that

$$
P(1.2)=\frac{17527}{16000}=1.0954375
$$

and

$$
\frac{7}{800000}=0.00000875
$$

So $\sqrt{1.2}$ lies between 1.0954375 and 1.09544625 .

Exercise 18.2.1

Use the 5th order Taylor polynomial for $f(x)=\sqrt{x}$ at 1 to estimate $\sqrt{1.2}$. Is this an underestimate or an overestimate? Find an upper bound for the largest amount by which the estimate and $\sqrt{1.2}$ differ.

Exercise 18.2.2

Find the 3 rd order Taylor polynomial for $f(x)=\sqrt[3]{1+x}$ at 0 and use it to estimate $\sqrt[3]{1.1}$. Is this an underestimate or an overestimate? Find an upper bound for the largest amount by which the estimate and $\sqrt[3]{1.1}$ differ.

Exercise 18.2.3

Suppose $f \in C^{(2)}(a, b)$. Use Taylor's theorem to show that

$$
\lim _{h \rightarrow 0} \frac{f(c+h)+f(c-h)-2 f(c)}{h^{2}}=f^{\prime \prime}(c)
$$

for any $c \in(a, b)$.

Exercise 18.2.4

Suppose $f \in C^{(1)}(a, b), c \in(a, b), f^{\prime}(c)=0$, and $f^{\prime \prime}$ exists on (a, b) and is continuous at c. Show that f has a local maximum at c if $f^{\prime \prime}(c)<0$ and a local minimum at c if $f^{\prime \prime}(c)>0$.

