Lecture 17: Mean Value Theorem

17.1 Rolle's theorem

Definition We say f is differentiable on an open interval I if f is differentiable at every point $a \in I$.

Definition Suppose $D \subset \mathbb{R}$ and $f: D \to \mathbb{R}$. We say f has a local maximum at a point $a \in D$ if there exists $\delta > 0$ such that $f(a) \geq f(x)$ for all $x \in (a - \delta, a + \delta) \cap D$. We say f has a local minimum at a point $a \in D$ if there exists $\delta > 0$ such that $f(a) \leq f(x)$ for all $x \in (a - \delta, a + \delta) \cap D$.

Proposition Suppose $D \subset \mathbb{R}$, $f : D \to \mathbb{R}$, and a is an interior point of D at which f has either a local maximum or a local minimum. If f is differentiable at a, then f'(a) = 0.

Proof Suppose f has a local maximum at a. Choose $\delta > 0$ so that $(a - \delta, a + \delta) \subset D$ and $f(a) \geq f(x)$ for all $x \in (a - \delta, a + \delta)$. Then

$$\frac{f(x) - f(a)}{x - a} \ge 0$$

for all $x \in (a - \delta, a)$ and

$$\frac{f(x) - f(a)}{x - a} \le 0$$

for all $x \in (a, a + \delta)$. Hence

$$\lim_{x \to a^{-}} \frac{f(x) - f(a)}{x - a} \ge 0$$

and

$$\lim_{x \to a^+} \frac{f(x) - f(a)}{x - a} \le 0.$$

Hence

$$0 \le \lim_{x \to a^{-}} \frac{f(x) - f(a)}{x - a} = f'(a) = \lim_{x \to a^{+}} \frac{f(x) - f(a)}{x - a} \le 0,$$

so we must have f'(a) = 0.

The following theorem is known as *Rolle's theorem*.

Theorem Let $a, b \in \mathbb{R}$ and suppose f is continuous on [a, b] and differentiable on (a, b). If f(a) = f(b), then there exists a point $c \in (a, b)$ at which f'(c) = 0.

Proof By the Extreme Value Theorem, we know f attains a maximum and a minimum value on [a, b]. Let m be the minimum value and M the maximum value of f on [a, b]. If m = M = f(a) = f(b), then f(x) = m for all $x \in [a, b]$, and so f'(x) = 0 for all $x \in (a, b)$. Otherwise, one of m or M occurs at a point c in (a, b). Hence f has either a local maximum or a local minimum at c, and so f'(c) = 0.

Exercise 17.1.1

Suppose f is differentiable on (a, b) and $f'(x) \neq 0$ for all $x \in (a, b)$. Show that for any $x, y \in (a, b), f(x) \neq f(y)$.

Exercise 17.1.2

Explain why the equation $x^5 + 10x = 5$ has exactly one solution.

Exercise 17.1.3

Let f(x) be a third degree polynomial. Show that the equation f(x) = 0 as at least one, but no more than three, solutions.

17.2 The Mean Value Theorem

The following theorem is known as the generalized mean value theorem.

Theorem Let $a, b \in \mathbb{R}$. If f and g are continuous on [a, b] and differentiable on (a, b), then there exists a point $c \in (a, b)$ at which

$$(f(b) - f(a))g'(c) = (g(b) - g(a))f'(c).$$

Proof Let

$$h(t) = (f(b) - f(a))g(t) - (g(b) - g(a))f(t).$$

Then h is continuous on [a, b], differentiable on (a, b), and

$$h(a) = f(b)g(a) - f(a)g(a) - f(a)g(b) + f(a)g(a) = f(b)g(a) - f(a)g(b)$$

and

$$h(b) = f(b)g(b) - f(a)g(b) - f(b)g(b) + f(b)g(a) = f(b)g(a) - f(a)g(b).$$

Hence, by Rolle's theorem, there exists a point $c \in (a, b)$ at which h'(c) = 0. But then

$$0 = h'(c) = (f(b) - f(a))g'(c) - (g(b) - g(a))f'(c),$$

which implies that

$$(f(b) - f(a))g'(c) = (g(b) - g(a))f'(c).$$

The following theorem is known as the Mean Value Theorem.

Theorem Let $a, b \in \mathbb{R}$. If f is continuous on [a, b] and differentiable on (a, b), then there exists a point $c \in (a, b)$ at which

$$f(b) - f(a) = (b - a)f'(c).$$

Proof Apply the previous result with g(x) = x.

Exercise 17.2.1

Prove the Mean Value Theorem using Rolle's theorem and the function

$$k(t) = f(t) - \left(\left(\frac{f(b) - f(a)}{b - a}\right)(t - a) + f(a)\right).$$

Give a geometric interpretation to k and compare it with the function h used in the proof of the generalized mean value theorem.

Exercise 17.2.2

Let $a, b \in \mathbb{R}$. Suppose f is continuous on [a, b], differentiable on (a, b), and $|f'(x)| \leq M$ for all $x \in (a, b)$. Show that

$$|f(b) - f(a)| \le M|b - a|.$$

Exercise 17.2.3

Show that for all x > 0, $\sqrt{1 + x} < 1 + \frac{x}{2}$.

Exercise 17.2.4

Suppose I is an open interval, $f: I \to \mathbb{R}$, and f'(x) = 0 for all $x \in I$. Show that there exists $\alpha \in \mathbb{R}$ such that $f(x) = \alpha$ for all $x \in I$.

Exercise 17.2.5

Suppose I is an open interval, $f: I \to \mathbb{R}$, $g: I \to \mathbb{R}$, and f'(x) = g'(x) for all $x \in I$. Show that there exists $\alpha \in \mathbb{R}$ such that $g(x) = f(x) + \alpha$ for all $x \in I$.

Exercise 17.2.6

Let $D = \mathbb{R} \setminus \{0\}$. Define $f : D \to \mathbb{R}$ and $g : D \to \mathbb{R}$ by $f(x) = x^2$ and

$$g(x) = \begin{cases} x^2, & \text{if } x < 0, \\ x^2 + 1, & \text{if } x > 0. \end{cases}$$

Show that f'(x) = g'(x) for all $x \in D$, but there does not exist $\alpha \in \mathbb{R}$ such that $g(x) = f(x) + \alpha$ for all $x \in D$. Why does this not contradict the conclusion of the previous exercise?

Proposition If f is differentiable on (a,b) and f'(x) > 0 for all $x \in (a,b)$, then f is increasing on (a,b).

Proof Let $x, y \in (a, b)$ with x < y. By the Mean Value Theorem, there exists a point $c \in (x, y)$ such that

$$f(y) - f(x) = (y - x)f'(c)$$

Since y - x > 0 and f'(c) > 0, we have f(y) > f(x), and so f is increasing on (a, b).

Proposition If f is differentiable on (a, b) and f'(x) < 0 for all $x \in (a, b)$, then f is decreasing on (a, b).

Exercise 17.2.7

State and prove similar conditions for nonincreasing and nondecreasing functions.

17.3 Discontinuities of derivatives

The following theorem is sometimes called the intermediate value theorem for derivatives.

Theorem Suppose f is differentiable on an open interval I and $a, b \in I$. If $\lambda \in \mathbb{R}$ and either $f'(a) < \lambda < f'(b)$ or $f'(a) > \lambda > f'(b)$, then there exists $c \in (a, b)$ such that $f'(c) = \lambda$.

Proof Suppose $f'(a) < \lambda < f'(b)$ and define $g: I \to \mathbb{R}$ by $g(x) = f(x) - \lambda x$. Then g is differentiable on I, and so continuous on [a, b]. Let c be a point in [a, b] at which g attains its minimum value. Now

$$g'(a) = f'(a) - \lambda < 0,$$

so there exists a < t < b such that

$$g(t) - g(a) < 0.$$

Thus $c \neq a$. Similarly,

$$g'(b) = f'(b) - \lambda > 0,$$

so there exists a < s < b such that

$$g(s) - g(b) < 0.$$

Thus $c \neq b$. Hence $c \in (a, b)$, and so g'(c) = 0. Thus $0 = f'(c) - \lambda$, and so $f'(c) = \lambda$.

Exercise 17.3.1 Define $g: (-1,1) \to \mathbb{R}$ by

$$g(x) = \begin{cases} -1, & \text{if } -1 < x < 0, \\ 1, & \text{if } 0 \le x < 1. \end{cases}$$

Does there exist a function $f: (-1,1) \to \mathbb{R}$ such that f'(x) = g(x) for all $x \in (-1,1)$.

Exercise 17.3.2

Suppose f is differentiable on an open interval I. Show that f' cannot have any simple discontinuities in I.

Example Define $\varphi : [0,1] \to \mathbb{R}$ by $\varphi(x) = x(2x-1)(x-1)$. Define $\psi : \mathbb{R} \to \mathbb{R}$ by $\psi(x) = 6x^2 - 6x + 1$. Then

$$\varphi(x) = 2x^3 - 3x^2 + x,$$

so $\varphi'(x) = \psi(x)$ for all $x \in (0,1)$. Next define $s : \mathbb{R} \to \mathbb{R}$ by $s(x) = \varphi(x - \lfloor x \rfloor)$. Then for any $n \in \mathbb{Z}$ and n < x < n + 1,

$$s'(x) = \psi(x - n) = \psi(x - \lfloor x \rfloor).$$

Moreover, if x is an integer,

$$\lim_{h \to 0^+} \frac{s(x+h) - s(x)}{h} = \lim_{h \to 0^+} \frac{\varphi(h)}{h}$$
$$= \lim_{h \to 0^+} \frac{h(2h-1)(h-1)}{h}$$
$$= \lim_{h \to 0^+} (2h-1)(h-1) = 1$$

and

$$\lim_{h \to 0^{-}} \frac{s(x+h) - s(x)}{h} = \lim_{h \to 0^{-}} \frac{\varphi(h+1)}{h}$$
$$= \lim_{h \to 0^{-}} \frac{(h+1)(2h+1)h}{h}$$
$$= \lim_{h \to 0^{-}} (h+1)(2h+1) = 1.$$

Thus $s'(x) = 1 = \psi(x - \lfloor x \rfloor)$ when x is an integer, and so $s'(x) = \psi(x - \lfloor x \rfloor)$ for all $x \in \mathbb{R}$. Now $\psi(x) = 0$ if and only if $x = \frac{3 - \sqrt{3}}{6}$ or $x = \frac{3 + \sqrt{3}}{6}$. Since $\varphi(0) = 0$, $\varphi(\frac{3 - \sqrt{3}}{6}) = \frac{1}{6\sqrt{3}}$, $\varphi(\frac{3 + \sqrt{3}}{6}) = -\frac{1}{6\sqrt{3}}$, and $\varphi(1) = 0$, we see that φ attains a maximum value of $\frac{1}{6\sqrt{3}}$ and a minimum value of $-\frac{1}{6\sqrt{3}}$. Hence for any $n \in \mathbb{Z}$, $s((n, n + 1)) = [-\frac{1}{6\sqrt{3}}, \frac{1}{6\sqrt{3}}]$.

Also, $\psi'(x) = 12x - 6$, so $\psi'(x) = 0$ if and only if $x = \frac{1}{2}$. Since $\psi(0) = 1$, $\psi(\frac{1}{2}) = -\frac{1}{2}$, and $\psi(1) = 1$, we see that ψ attains a maximum value of 1 and a minimum value of $-\frac{1}{2}$ on the interval [0, 1]. Hence for any $n \in \mathbb{Z}$, $s'((n, n + 1)) = [-\frac{1}{2}, 1]$.

It follows from the preceding that neither the function $k(x) = s(\frac{1}{x})$ nor the function $g(x) = s'(\frac{1}{x})$ has a limit as x approaches 0.

Finally, let $D = \mathbb{R} \setminus 0$ and define $f : D \to \mathbb{R}$ by

$$f(x) = \begin{cases} x^2 s(\frac{1}{x}), & \text{if } x \neq 0, \\ 0, & \text{if } x = 0. \end{cases}$$

For $x \neq 0$, we have

$$f'(x) = x^2 s'\left(\frac{1}{x}\right)\left(-\frac{1}{x^2}\right) + 2xs\left(\frac{1}{x}\right) = -s'\left(\frac{1}{x}\right) + 2xs\left(\frac{1}{x}\right).$$

At 0, we have

$$f'(0) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h}$$
$$= \lim_{h \to 0} \frac{h^2 s\left(\frac{1}{h}\right)}{h}$$
$$= \lim_{h \to 0} h s\left(\frac{1}{h}\right) = 0,$$

where the final limit follows from the squeeze theorem and the fact that s is bounded. Hence we see that f is continuous on \mathbb{R} and differentiable on \mathbb{R} , but f' is not continuous since f'(x) does not have a limit as x approaches 0.

Exercise 17.3.3

Let D and s be as above and define $g: D \to \mathbb{R}$ by

$$g(x) = \begin{cases} x^4 s(\frac{1}{x}), & \text{if } x \neq 0, \\ 0, & \text{if } x = 0. \end{cases}$$

Show that g is differentiable on \mathbb{R} and that g' is continuous on \mathbb{R} .

17.4 l'Hôpital's rule

The following result is one case of *l'Hôpital's rule*.

Theorem Suppose $a, b \in \mathbb{R}$, f and g are differentiable on (a, b), $g'(x) \neq 0$ for all $x \in (a, b)$, and

$$\lim_{x \to a^+} \frac{f'(x)}{g'(x)} = \lambda.$$

If $\lim_{x\to a^+} f(x) = 0$ and $\lim_{x\to a^+} g(x) = 0$, then

$$\lim_{x \to a^+} \frac{f(x)}{g(x)} = \lambda$$

Proof Given $\epsilon > 0$, there exists $\delta > 0$ such that

$$\lambda - \frac{\epsilon}{2} < \frac{f'(x)}{g'(x)} < \lambda + \frac{\epsilon}{2}$$

whenever $x \in (a, a + \delta)$. Now, by the generalized mean value theorem, for any x and y with $a < x < y < a + \delta$, there exist a point $c \in (x, y)$ such that

$$\frac{f(y) - f(x)}{g(y) - g(x)} = \frac{f'(c)}{g'(c)}.$$

Hence

$$\lambda - \frac{\epsilon}{2} < \frac{f(y) - f(x)}{g(y) - g(x)} < \lambda + \frac{\epsilon}{2}.$$

Now

$$\lim_{x \to a} \frac{f(y) - f(x)}{g(y) - g(x)} = \frac{f(y)}{g(y)},$$

and so we have

$$\lambda - \epsilon < \lambda - \frac{\epsilon}{2} \le \frac{f(y)}{g(y)} \le \lambda + \frac{\epsilon}{2} < \lambda + \epsilon$$

for any $y \in (a, a + \delta)$. Hence

$$\lim_{x \to a^+} \frac{f(x)}{g(x)} = \lambda$$

Exercise 17.4.1

Use l'Hôpital's rule to compute

$$\lim_{x \to 0^+} \frac{\sqrt{1+x} - 1}{x}.$$

Exercise 17.4.2

Suppose $a, b \in \mathbb{R}$, f and g are differentiable on (a, b), $g'(x) \neq 0$ for all $x \in (a, b)$, and

$$\lim_{x \to b^{-}} \frac{f'(x)}{g'(x)} = \lambda.$$

Show that if $\lim_{x\to b^-} f(x) = 0$ and $\lim_{x\to b^-} g(x) = 0$, then

$$\lim_{x \to b^-} \frac{f(x)}{g(x)} = \lambda.$$