
Lecture 17: Mean Value Theorem

17.1 Rolle's theorem

De�nition We say f is di�erentiable on an open interval I if f is di�erentiable at every
point a 2 I.
De�nition Suppose D � R and f : D ! R. We say f has a local maximum at a point
a 2 D if there exists � > 0 such that f(a) � f(x) for all x 2 (a � �; a + �) \D. We say f
has a local minimum at a point a 2 D if there exists � > 0 such that f(a) � f(x) for all
x 2 (a � �; a + �) \D.
Proposition Suppose D � R, f : D ! R, and a is an interior point of D at which f
has either a local maximum or a local minimum. If f is di�erentiable at a, then f 0(a) = 0.

Proof Suppose f has a local maximum at a. Choose � > 0 so that (a � �; a + �) � D

and f(a) � f(x) for all x 2 (a � �; a + �). Then

f(x) � f(a)

x � a
� 0

for all x 2 (a � �; a) and
f(x) � f(a)

x � a
� 0

for all x 2 (a; a + �). Hence

lim
x!a�

f(x) � f(a)

x � a
� 0

and

lim
x!a+

f(x) � f(a)

x� a
� 0:

Hence

0 � lim
x!a�

f(x) � f(a)

x� a
= f 0(a) = lim

x!a+

f(x) � f(a)

x � a
� 0;

so we must have f 0(a) = 0.

The following theorem is known as Rolle's theorem.

Theorem Let a; b 2 R and suppose f is continuous on [a; b] and di�erentiable on (a; b).
If f(a) = f(b), then there exists a point c 2 (a; b) at which f 0(c) = 0.

Proof By the Extreme Value Theorem, we know f attains a maximum and a minimum
value on [a; b]. Let m be the minimum value and M the maximum value of f on [a; b]. If
m =M = f(a) = f(b), then f(x) = m for all x 2 [a; b], and so f 0(x) = 0 for all x 2 (a; b).
Otherwise, one ofm orM occurs at a point c in (a; b). Hence f has either a local maximum
or a local minimum at c, and so f 0(c) = 0.
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Exercise 17.1.1

Suppose f is di�erentiable on (a; b) and f 0(x) 6= 0 for all x 2 (a; b). Show that for any
x; y 2 (a; b), f(x) 6= f(y).

Exercise 17.1.2

Explain why the equation x5 + 10x = 5 has exactly one solution.

Exercise 17.1.3

Let f(x) be a third degree polynomial. Show that the equation f(x) = 0 as at least one,
but no more than three, solutions.

17.2 The Mean Value Theorem

The following theorem is known as the generalized mean value theorem.

Theorem Let a; b 2 R. If f and g are continuous on [a; b] and di�erentiable on (a; b),
then there exists a point c 2 (a; b) at which

(f(b) � f(a))g0(c) = (g(b) � g(a))f 0(c):

Proof Let
h(t) = (f(b) � f(a))g(t) � (g(b) � g(a))f(t):

Then h is continuous on [a; b], di�erentiable on (a; b), and

h(a) = f(b)g(a) � f(a)g(a) � f(a)g(b) + f(a)g(a) = f(b)g(a) � f(a)g(b)

and
h(b) = f(b)g(b) � f(a)g(b) � f(b)g(b) + f(b)g(a) = f(b)g(a) � f(a)g(b):

Hence, by Rolle's theorem, there exists a point c 2 (a; b) at which h0(c) = 0. But then

0 = h0(c) = (f(b) � f(a))g0(c)� (g(b) � g(a))f 0(c);

which implies that
(f(b) � f(a))g0(c) = (g(b) � g(a))f 0(c):

The following theorem is known as the Mean Value Theorem.

Theorem Let a; b 2 R. If f is continuous on [a; b] and di�erentiable on (a; b), then there
exists a point c 2 (a; b) at which

f(b) � f(a) = (b � a)f 0(c):

Proof Apply the previous result with g(x) = x.

Exercise 17.2.1

Prove the Mean Value Theorem using Rolle's theorem and the function

k(t) = f(t) �
��

f(b) � f(a)

b� a

�
(t� a) + f(a)

�
:
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Give a geometric interpretation to k and compare it with the function h used in the proof
of the generalized mean value theorem.

Exercise 17.2.2

Let a; b 2 R. Suppose f is continuous on [a; b], di�erentiable on (a; b), and jf 0(x)j �M for
all x 2 (a; b). Show that

jf(b) � f(a)j �M jb � aj:

Exercise 17.2.3

Show that for all x > 0,
p
1 + x < 1 + x

2
.

Exercise 17.2.4

Suppose I is an open interval, f : I ! R, and f 0(x) = 0 for all x 2 I. Show that there
exists � 2 R such that f(x) = � for all x 2 I.
Exercise 17.2.5

Suppose I is an open interval, f : I ! R, g : I ! R, and f 0(x) = g0(x) for all x 2 I. Show
that there exists � 2 R such that g(x) = f(x) + � for all x 2 I.
Exercise 17.2.6

Let D = R n f0g. De�ne f : D! R and g : D ! R by f(x) = x2 and

g(x) =

�
x2; if x < 0,
x2 + 1; if x > 0.

Show that f 0(x) = g0(x) for all x 2 D, but there does not exist � 2 R such that g(x) =
f(x) + � for all x 2 D. Why does this not contradict the conclusion of the previous
exercise?

Proposition If f is di�erentiable on (a; b) and f 0(x) > 0 for all x 2 (a; b), then f is
increasing on (a; b).

Proof Let x; y 2 (a; b) with x < y. By the Mean Value Theorem, there exists a point
c 2 (x; y) such that

f(y) � f(x) = (y � x)f 0(c):

Since y � x > 0 and f 0(c) > 0, we have f(y) > f(x), and so f is increasing on (a; b).

Proposition If f is di�erentiable on (a; b) and f 0(x) < 0 for all x 2 (a; b), then f is
decreasing on (a; b).

Exercise 17.2.7

State and prove similar conditions for nonincreasing and nondecreasing functions.

17.3 Discontinuities of derivatives

The following theorem is sometimes called the intermediate value theorem for derivatives.

Theorem Suppose f is di�erentiable on an open interval I and a; b 2 I. If � 2 R and
either f 0(a) < � < f 0(b) or f 0(a) > � > f 0(b), then there exists c 2 (a; b) such that
f 0(c) = �.
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Proof Suppose f 0(a) < � < f 0(b) and de�ne g : I ! R by g(x) = f(x) � �x. Then g is
di�erentiable on I, and so continuous on [a; b]. Let c be a point in [a; b] at which g attains
its minimum value. Now

g0(a) = f 0(a) � � < 0;

so there exists a < t < b such that

g(t)� g(a) < 0:

Thus c 6= a. Similarly,

g0(b) = f 0(b) � � > 0;

so there exists a < s < b such that

g(s) � g(b) < 0:

Thus c 6= b. Hence c 2 (a; b), and so g0(c) = 0. Thus 0 = f 0(c) � �, and so f 0(c) = �.

Exercise 17.3.1

De�ne g : (�1; 1) ! R by

g(x) =

��1; if �1 < x < 0,
1; if 0 � x < 1.

Does there exist a function f : (�1; 1)! R such that f 0(x) = g(x) for all x 2 (�1; 1).
Exercise 17.3.2

Suppose f is di�erentiable on an open interval I. Show that f 0 cannot have any simple
discontinuities in I.

Example De�ne ' : [0; 1] ! R by '(x) = x(2x � 1)(x � 1). De�ne  : R ! R by
 (x) = 6x2 � 6x + 1. Then

'(x) = 2x3 � 3x2 + x;

so '0(x) =  (x) for all x 2 (0; 1). Next de�ne s : R! R by s(x) = '(x � bxc). Then for
any n 2Zand n < x < n+ 1,

s0(x) =  (x � n) =  (x � bxc):

Moreover, if x is an integer,

lim
h!0+

s(x + h)� s(x)

h
= lim

h!0+

'(h)

h

= lim
h!0+

h(2h� 1)(h � 1)

h

= lim
h!0+

(2h� 1)(h� 1) = 1
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and

lim
h!0�

s(x + h)� s(x)

h
= lim

h!0�

'(h+ 1)

h

= lim
h!0�

(h+ 1)(2h + 1)h

h

= lim
h!0�

(h + 1)(2h + 1) = 1:

Thus s0(x) = 1 =  (x�bxc) when x is an integer, and so s0(x) =  (x�bxc) for all x 2 R.
Now  (x) = 0 if and only if x = 3�

p
3

6
or x = 3+

p
3

6
. Since '(0) = 0, '(3�

p
3

6
) = 1

6
p
3
,

'(3+
p
3

6
) = � 1

6
p
3
, and '(1) = 0, we see that ' attains a maximum value of 1

6
p
3
and a

minimum value of � 1

6
p
3
. Hence for any n 2Z, s((n; n + 1)) = [� 1

6
p
3
; 1

6
p
3
].

Also,  0(x) = 12x � 6, so  0(x) = 0 if and only if x = 1

2
. Since  (0) = 1,  ( 1

2
) = � 1

2
,

and  (1) = 1, we see that  attains a maximum value of 1 and a minimum value of �1

2

on the interval [0; 1]. Hence for any n 2Z, s0((n; n+ 1)) = [�1

2
; 1].

It follows from the preceding that neither the function k(x) = s( 1
x
) nor the function

g(x) = s0( 1
x
) has a limit as x approaches 0.

Finally, let D = R n 0 and de�ne f : D ! R by

f(x) =

�
x2s( 1

x
); if x 6= 0,

0; if x = 0.

For x 6= 0, we have

f 0(x) = x2s0
�
1

x

��
� 1

x2

�
+ 2xs

�
1

x

�
= �s0

�
1

x

�
+ 2xs

�
1

x

�
:

At 0, we have

f 0(0) = lim
h!0

f(0 + h)� f(0)

h

= lim
h!0

h2s
�
1

h

�
h

= lim
h!0

hs

�
1

h

�
= 0;

where the �nal limit follows from the squeeze theorem and the fact that s is bounded.
Hence we see that f is continuous on R and di�erentiable on R, but f 0 is not continuous
since f 0(x) does not have a limit as x approaches 0.

Exercise 17.3.3

Let D and s be as above and de�ne g : D ! R by

g(x) =

�
x4s( 1

x
); if x 6= 0,

0; if x = 0.

Show that g is di�erentiable on R and that g0 is continuous on R.
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17.4 l'Hôpital's rule

The following result is one case of l'Hôpital's rule.

Theorem Suppose a; b 2 R, f and g are di�erentiable on (a; b), g0(x) 6= 0 for all x 2
(a; b), and

lim
x!a+

f 0(x)

g0(x)
= �:

If limx!a+ f(x) = 0 and limx!a+ g(x) = 0, then

lim
x!a+

f(x)

g(x)
= �:

Proof Given � > 0, there exists � > 0 such that

�� �

2
<
f 0(x)

g0(x)
< �+

�

2

whenever x 2 (a; a + �). Now, by the generalized mean value theorem, for any x and y

with a < x < y < a+ �, there exist a point c 2 (x; y) such that

f(y) � f(x)

g(y)� g(x)
=
f 0(c)

g0(c)
:

Hence

�� �

2
<
f(y) � f(x)

g(y) � g(x)
< �+

�

2
:

Now

lim
x!a

f(y) � f(x)

g(y) � g(x)
=
f(y)

g(y)
;

and so we have

�� � < � � �

2
� f(y)

g(y)
� �+

�

2
< �+ �

for any y 2 (a; a + �). Hence

lim
x!a+

f(x)

g(x)
= �:

Exercise 17.4.1

Use l'Hôpital's rule to compute

lim
x!0+

p
1 + x� 1

x
:

Exercise 17.4.2

Suppose a; b 2 R, f and g are di�erentiable on (a; b), g0(x) 6= 0 for all x 2 (a; b), and

lim
x!b�

f 0(x)

g0(x)
= �:

Show that if limx!b� f(x) = 0 and limx!b� g(x) = 0, then

lim
x!b�

f(x)

g(x)
= �:


