Lecture 16: Derivatives

16.1 Best linear approximations and the derivative

Definition A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is said to be linear if for every $x, y \in \mathbb{R}$,

$$
f(x+y)=f(x)+f(y)
$$

and for every $\alpha \in \mathbb{R}$ and $x \in \mathbb{R}$,

$$
f(\alpha x)=\alpha f(x)
$$

Exercise 16.1.1

Show that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is linear, then there exists $m \in \mathbb{R}$ such that $f(x)=m x$ for all $x \in \mathbb{R}$.

Definition Suppose $D \in \mathbb{R}, f: D \rightarrow \mathbb{R}$, and a is an interior point of D. We say f is differentiable at a if there exists a linear function $d f_{a}: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
\lim _{x \rightarrow a} \frac{f(x)-f(a)-d f_{a}(x-a)}{x-a}=0 .
$$

The function $d f_{a}$ is called the best linear approximation to f at a, or the differential of f at a.

Proposition Suppose $D \subset \mathbb{R}, f: D \rightarrow \mathbb{R}$, and a is an interior point of D. Then f is differentiable at a if and only if

$$
\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

exists, in which case $d f_{a}(x)=m x$ where

$$
m=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

Proof Let $m \in \mathbb{R}$ and let $L: \mathbb{R} \rightarrow \mathbb{R}$ be the linear function $L(x)=m x$. Then

$$
\frac{f(x)-f(a)-L(x-a)}{x-a}=\frac{f(x)-f(a)-m(x-a)}{x-a}=\frac{f(x)-f(a)}{x-a}-m .
$$

Hence

$$
\lim _{x \rightarrow a} \frac{f(x)-f(a)-L(x-a)}{x-a}=0
$$

if and only if

$$
\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=m
$$

Definition Suppose $D \subset \mathbb{R}, f: D \rightarrow \mathbb{R}, a$ is an interior point of D, and f is differentiable at a. We call

$$
\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

the derivative of f at a, which we denote $f^{\prime}(a)$.
Note that if f is differentiable at a, then

$$
\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} .
$$

Definition Suppose $D \subset \mathbb{R}, f: D \rightarrow \mathbb{R}$, and E is the set of interior points of D at which f is differentiable. The function $f^{\prime}: E \rightarrow \mathbb{R}$ defined by

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

is called the derivative of f.
Example Let $n \in \mathbb{Z}^{+}$and define $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=x^{n}$. Then

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{(x+h)^{n}-x^{n}}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{n}+n x^{n-1} h+\sum_{k=2}^{n}\binom{n}{k} x^{n-k} h^{k}-x^{n}}{h} \\
& =\lim _{h \rightarrow 0}\left(n x^{n-1}+\sum_{k=2}^{n}\binom{n}{k} x^{n-k} h^{k-1}\right) \\
& =n x^{n-1} .
\end{aligned}
$$

Example Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=|x|$. Then

$$
\frac{f(0+h)-f(0)}{h}=\frac{|h|}{h}= \begin{cases}1, & \text { if } x>0 \\ -1, & \text { if } x<0 .\end{cases}
$$

Hence

$$
\lim _{h \rightarrow 0^{-}} \frac{f(0+h)-f(0)}{h}=-1
$$

and

$$
\lim _{h \rightarrow 0^{+}} \frac{f(0+h)-f(0)}{h}=1 .
$$

Thus f is not differentiable at 0 .

Exercise 16.1.2

Show that if $c \in \mathbb{R}$ and $f(x)=c$ for all $x \in \mathbb{R}$, then $f^{\prime}(x)=0$ for all $x \in \mathbb{R}$.

Exercise 16.1.3

Define $f:[0,+\infty) \rightarrow[0,+\infty)$ by $f(x)=\sqrt{x}$. Show that $f^{\prime}:(0,+\infty) \rightarrow(0,+\infty)$ is given by

$$
f^{\prime}(x)=\frac{1}{2 \sqrt{x}}
$$

Exercise 16.1.4
Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}x, & \text { if } x<0 \\ x^{2}, & \text { if } x \geq 0\end{cases}
$$

Is f differentiable at 0 ?

Exercise 16.1.5

Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}x^{2}, & \text { if } x<0 \\ x^{3}, & \text { if } x \geq 0\end{cases}
$$

Is f differentiable at 0 ?
Proposition If f is differentiable at a, then f is continuous at a.
Proof If f is differentiable at a, then

$$
\lim _{x \rightarrow a}(f(x)-f(a))=\lim _{x \rightarrow a}\left(\frac{f(x)-f(a)}{x-a}\right)(x-a)=f^{\prime}(a)(0)=0 .
$$

Hence $\lim _{x \rightarrow a} f(x)=f(a)$, and so f is continuous at a.

16.2 The rules

Proposition Suppose f is differentiable at a and $\alpha \in \mathbb{R}$. Then αf is differentiable at a and $(\alpha f)^{\prime}(a)=\alpha f^{\prime}(a)$.

Exercise 16.2.1

Prove the previous proposition.
Proposition Suppose f and g are both differentiable at a. Then $f+g$ is differentiable at a and $(f+g)^{\prime}(a)=f^{\prime}(a)+g^{\prime}(a)$.

Exercise 16.2.2

Prove the previous proposition.
The following proposition is called the product rule.
Proposition Suppose f and g are both differentiable at a. Then $f g$ is differentiable at a and $(f g)^{\prime}(a)=f(a) g^{\prime}(a)+g(a) f^{\prime}(a)$.

Proof We have

$$
\begin{aligned}
(f g)^{\prime}(a) & =\lim _{h \rightarrow 0} \frac{f(a+h) g(a+h)-f(a) g(a)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(a+h) g(a+h)-f(a) g(a+h)+f(a) g(a+h)-f(a) g(a)}{h} \\
& =\lim _{h \rightarrow 0}\left(g(a+h) \frac{f(a+h)-f(a)}{h}+f(a) \frac{g(a+h)-g(a)}{h}\right) \\
& =g(a) f^{\prime}(a)+f(a) g^{\prime}(a),
\end{aligned}
$$

where we know $\lim _{h \rightarrow 0} g(a+h)=g(a)$ by the continuity of g at a, which in turn follows from the assumption that g is differentiable at a.

Exercise 16.2.3

Given $n \in \mathbb{Z}+$ and $f(x)=x^{n}$, use induction and the product rule to show that $f^{\prime}(x)=$ $n x^{n-1}$.

The following proposition is called the quotient rule.
Proposition Suppose $D \subset \mathbb{R}, f: D \rightarrow \mathbb{R}, g: D \rightarrow \mathbb{R}, a$ is in the interior of D, and $g(x) \neq 0$ for all $x \in D$. If f and g are both differentiable at a, then $\frac{f}{g}$ is differentiable at a and

$$
\left(\frac{f}{g}\right)^{\prime}(a)=\frac{g(a) f^{\prime}(a)-f(a) g^{\prime}(a)}{(g(a))^{2}}
$$

Proof We have

$$
\begin{aligned}
\left(\frac{f}{g}\right)^{\prime}(a) & =\lim _{h \rightarrow 0} \frac{\frac{f(a+h)}{g(a+h)}-\frac{f(a)}{g(a)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(a+h) g(a)-f(a) g(a+h)}{h g(a+h) g(a)} \\
& =\lim _{h \rightarrow 0} \frac{f(a+h) g(a)-f(a) g(a)+f(a) g(a)-f(a) g(a+h)}{h g(a+h) g(a)} \\
& =\lim _{h \rightarrow 0} \frac{g(a) \frac{f(a+h)-f(a)}{h}-f(a) \frac{g(a+h)-g(a)}{h}}{g(a+h) g(a)} \\
& =\frac{g(a) f^{\prime}(a)-f(a) g^{\prime}(a)}{(g(a))^{2}},
\end{aligned}
$$

where we know $\lim _{h \rightarrow 0} g(a+h)=g(a)$ by the continuity of g at a, which in turn follows from the assumption that g is differentiable at a.

Exercise 16.2.4

Show that for any integer $n \neq 0$, if $f(x)=x^{n}$, then $f^{\prime}(x)=n x^{n-1}$.
The following proposition is called the chain rule.

Proposition Suppose $D \subset \mathbb{R}, E \subset \mathbb{R}, g: D \rightarrow \mathbb{R}, f: E \rightarrow \mathbb{R}, g(D) \subset E, g$ is differentiable at a, and f is differentiable at $g(a)$. Then $f \circ g$ is differentiable at a and

$$
(f \circ g)^{\prime}(a)=f^{\prime}(g(a)) g^{\prime}(a)
$$

Proof Choose $\delta>0$ such that $(a-\delta, a+\delta) \subset D$ and $\epsilon>0$ such that $(g(a)-\epsilon, g(a)+\epsilon) \subset$ E. Define $\varphi:(-\delta, \delta) \rightarrow \mathbb{R}$ by

$$
\varphi(h)= \begin{cases}\frac{g(a+h)-g(a)-g^{\prime}(a) h}{h}, & \text { if } h \neq 0, \\ 0, & \text { if } h=0,\end{cases}
$$

and $\psi:(-\epsilon, \epsilon) \rightarrow \mathbb{R}$ by

$$
\psi(h)= \begin{cases}\frac{f(g(a)+h)-f(g(a))-f^{\prime}(g(a)) h}{h}, & \text { if } h \neq 0 \\ 0, & \text { if } h=0\end{cases}
$$

The assumption that g is differentiable at $a \operatorname{implies}$ that φ is continuous at 0 and the assumption that f is differentiable at $g(a)$ implies that ψ is continuous at 0 . Moreover, note that

$$
g(a+h)=h \varphi(h)+g^{\prime}(a) h+g(a)
$$

for $h \in(-\delta, \delta)$ and

$$
f(g(a)+h))=h \psi(h)+f^{\prime}(g(a)) h+f(g(a))
$$

for $h \in(-\epsilon, \epsilon)$. Hence

$$
f(g(a+h))=f\left(h \varphi(h)+g^{\prime}(a) h+g(a)\right)
$$

for $h \in(-\delta, \delta)$. Now

$$
\lim _{h \rightarrow 0}\left(h \varphi(h)+g^{\prime}(a) h\right)=0
$$

so we may choose $\gamma>0$ so that $\gamma \leq \delta$ and

$$
h \varphi(h)+g^{\prime}(a) h<\epsilon
$$

whenever $h \in(-\gamma, \gamma)$. Then

$$
f(g(a+h))=\left(h \varphi(h)+g^{\prime}(a) h\right) \psi\left(h \varphi(h)+g^{\prime}(a) h\right)+f^{\prime}(g(a))\left(h \varphi(h)+g^{\prime}(a) h\right)+f(g(a)),
$$

so

$$
\begin{aligned}
f(g(a+h))-f(g(a))= & \left(h \varphi(h)+g^{\prime}(a) h\right) \psi\left(h \varphi(h)+g^{\prime}(a) h\right)+f^{\prime}(g(a))\left(h \varphi(h)+g^{\prime}(a) h\right) \\
= & h \varphi(h) \psi\left(h \varphi(h)+g^{\prime}(a) h\right)+h g^{\prime}(a) \psi\left(h \varphi(h)+g^{\prime}(a) h\right) \\
& +f^{\prime}(g(a)) \varphi(h) h+f^{\prime}(g(a)) g^{\prime}(a) h .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \frac{f(g(a+h))-f(g(a))}{h}=f^{\prime}(g(a)) g^{\prime}(a)+\varphi(h) \psi\left(h \varphi(h)+g^{\prime}(a) h\right) \\
&+g^{\prime}(a) \psi\left(h \varphi(h)+g^{\prime}(a) h\right)+f^{\prime}(g(a)) \varphi(h)
\end{aligned}
$$

Now

$$
\begin{gathered}
\lim _{h \rightarrow 0} \varphi(h)=0 \\
\lim _{h \rightarrow 0}\left(h \varphi(h)+g^{\prime}(a) h\right)=0
\end{gathered}
$$

and, since φ and ψ are continuous at 0 ,

$$
\lim _{h \rightarrow 0} \psi\left(h \varphi(h)+g^{\prime}(a) h\right)=0
$$

Thus

$$
\lim _{h \rightarrow 0} \frac{f(g(a+h))-f(g(a))}{h}=f^{\prime}(g(a)) g^{\prime}(a) .
$$

Proposition Suppose $D \subset \mathbb{R}, f: D \rightarrow \mathbb{R}$ is one-to-one, a is in the interior of D, f^{-1} is continuous at $f(a)$, and f is differentiable at a with $f^{\prime}(a) \neq 0$. Then f^{-1} is differentiable at $f(a)$ and

$$
\left(f^{-1}\right)^{\prime}(f(a))=\frac{1}{f^{\prime}(a)}
$$

Proof Choose $\delta>0$ so that $(f(a)-\delta, f(a)+\delta) \subset f(D)$. For $h \in(-\delta, \delta)$, let

$$
k=f^{-1}(f(a)+h)-a .
$$

Then

$$
f^{-1}(f(a)+h)=a+k
$$

so

$$
f(a)+h=f(a+k)
$$

and

$$
h=f(a+k)-f(a) .
$$

Hence

$$
\frac{f^{-1}(f(a)+k)-f^{-1}(f(a))}{h}=\frac{a+k-a}{f(a+k)-f(a)}=\frac{1}{\frac{f(a+k)-f(a)}{k}}
$$

Now if $h \rightarrow 0$, then $k \rightarrow 0$ (since f^{-1} is continuous at $f(a)$), and so

$$
\lim _{h \rightarrow 0} \frac{f^{-1}(f(a)+k)-f^{-1}(f(a))}{h}=\lim _{k \rightarrow 0} \frac{1}{\frac{f(a+k)-f(a)}{k}}=\frac{1}{f^{\prime}(a)} .
$$

Example For $n \in Z^{+}$, define $f:[0,+\infty) \rightarrow \mathbb{R}$ by $f(x)=\sqrt[n]{x}$. Then f is the inverse of $g:[0,+\infty) \rightarrow \mathbb{R}$ defined by $g(x)=x^{n}$. Thus, for any $x \in(0,+\infty)$,

$$
f^{\prime}(x)=\frac{1}{g^{\prime}(f(x))}=\frac{1}{n(\sqrt[n]{x})^{n-1}}=\frac{1}{n} x^{\frac{1}{n}-1} .
$$

Exercise 16.2.5

Show that for any rational $n \neq 0$, if $f(x)=x^{n}$, then $f^{\prime}(x)=n x^{n-1}$.

