Lecture 16: Derivatives

16.1 Best linear approximations and the derivative

Definition A function $f : \mathbb{R} \to \mathbb{R}$ is said to be *linear* if for every $x, y \in \mathbb{R}$,

$$f(x+y) = f(x) + f(y)$$

and for every $\alpha \in \mathbb{R}$ and $x \in \mathbb{R}$,

$$f(\alpha x) = \alpha f(x).$$

Exercise 16.1.1

Show that if $f : \mathbb{R} \to \mathbb{R}$ is linear, then there exists $m \in \mathbb{R}$ such that f(x) = mx for all $x \in \mathbb{R}$.

Definition Suppose $D \in \mathbb{R}$, $f : D \to \mathbb{R}$, and a is an interior point of D. We say f is *differentiable* at a if there exists a linear function $df_a : \mathbb{R} \to \mathbb{R}$ such that

$$\lim_{x \to a} \frac{f(x) - f(a) - df_a(x - a)}{x - a} = 0.$$

The function df_a is called the *best linear approximation* to f at a, or the *differential* of f at a.

Proposition Suppose $D \subset \mathbb{R}$, $f : D \to \mathbb{R}$, and a is an interior point of D. Then f is differentiable at a if and only if

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

exists, in which case $df_a(x) = mx$ where

$$m = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}.$$

Proof Let $m \in \mathbb{R}$ and let $L : \mathbb{R} \to \mathbb{R}$ be the linear function L(x) = mx. Then

$$\frac{f(x) - f(a) - L(x - a)}{x - a} = \frac{f(x) - f(a) - m(x - a)}{x - a} = \frac{f(x) - f(a)}{x - a} - m.$$

Hence

$$\lim_{x \to a} \frac{f(x) - f(a) - L(x - a)}{x - a} = 0$$

if and only if

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = m.$$

Definition Suppose $D \subset \mathbb{R}$, $f: D \to \mathbb{R}$, a is an interior point of D, and f is differentiable at a. We call

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

the *derivative* of f at a, which we denote f'(a).

Note that if f is differentiable at a, then

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h}.$$

Definition Suppose $D \subset \mathbb{R}$, $f : D \to \mathbb{R}$, and E is the set of interior points of D at which f is differentiable. The function $f' : E \to \mathbb{R}$ defined by

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

is called the *derivative* of f.

Example Let $n \in \mathbb{Z}^+$ and define $f : \mathbb{R} \to \mathbb{R}$ by $f(x) = x^n$. Then

$$f'(x) = \lim_{h \to 0} \frac{(x+h)^n - x^n}{h}$$

= $\lim_{h \to 0} \frac{x^n + nx^{n-1}h + \sum_{k=2}^n \binom{n}{k} x^{n-k}h^k - x^n}{h}$
= $\lim_{h \to 0} (nx^{n-1} + \sum_{k=2}^n \binom{n}{k} x^{n-k}h^{k-1})$
= nx^{n-1} .

Example Define $f : \mathbb{R} \to \mathbb{R}$ by f(x) = |x|. Then

$$\frac{f(0+h) - f(0)}{h} = \frac{|h|}{h} = \begin{cases} 1, & \text{if } x > 0, \\ -1, & \text{if } x < 0. \end{cases}$$

Hence

$$\lim_{h \to 0^{-}} \frac{f(0+h) - f(0)}{h} = -1$$

and

$$\lim_{h \to 0^+} \frac{f(0+h) - f(0)}{h} = 1.$$

Thus f is not differentiable at 0.

Exercise 16.1.2

Show that if $c \in \mathbb{R}$ and f(x) = c for all $x \in \mathbb{R}$, then f'(x) = 0 for all $x \in \mathbb{R}$.

Exercise 16.1.3

Define $f: [0, +\infty) \to [0, +\infty)$ by $f(x) = \sqrt{x}$. Show that $f': (0, +\infty) \to (0, +\infty)$ is given by

$$f'(x) = \frac{1}{2\sqrt{x}}.$$

Exercise 16.1.4

Define $f : \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} x, & \text{if } x < 0, \\ x^2, & \text{if } x \ge 0. \end{cases}$$

Is f differentiable at 0?

Exercise 16.1.5 Define $f : \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} x^2, & \text{if } x < 0, \\ x^3, & \text{if } x \ge 0. \end{cases}$$

Is f differentiable at 0?

Proposition If f is differentiable at a, then f is continuous at a.

Proof If f is differentiable at a, then

$$\lim_{x \to a} (f(x) - f(a)) = \lim_{x \to a} \left(\frac{f(x) - f(a)}{x - a} \right) (x - a) = f'(a)(0) = 0.$$

Hence $\lim_{x\to a} f(x) = f(a)$, and so f is continuous at a.

16.2 The rules

Proposition Suppose f is differentiable at a and $\alpha \in \mathbb{R}$. Then αf is differentiable at a and $(\alpha f)'(a) = \alpha f'(a)$.

Exercise 16.2.1 Prove the previous proposition.

Proposition Suppose f and g are both differentiable at a. Then f + g is differentiable at a and (f + g)'(a) = f'(a) + g'(a).

Exercise 16.2.2

Prove the previous proposition.

The following proposition is called the *product rule*.

Proposition Suppose f and g are both differentiable at a. Then fg is differentiable at a and (fg)'(a) = f(a)g'(a) + g(a)f'(a).

Proof We have

$$(fg)'(a) = \lim_{h \to 0} \frac{f(a+h)g(a+h) - f(a)g(a)}{h}$$

=
$$\lim_{h \to 0} \frac{f(a+h)g(a+h) - f(a)g(a+h) + f(a)g(a+h) - f(a)g(a)}{h}$$

=
$$\lim_{h \to 0} \left(g(a+h)\frac{f(a+h) - f(a)}{h} + f(a)\frac{g(a+h) - g(a)}{h}\right)$$

=
$$g(a)f'(a) + f(a)g'(a),$$

where we know $\lim_{h\to 0} g(a+h) = g(a)$ by the continuity of g at a, which in turn follows from the assumption that g is differentiable at a.

Exercise 16.2.3

Given $n \in \mathbb{Z}+$ and $f(x) = x^n$, use induction and the product rule to show that $f'(x) = nx^{n-1}$.

The following proposition is called the *quotient rule*.

Proposition Suppose $D \subset \mathbb{R}$, $f : D \to \mathbb{R}$, $g : D \to \mathbb{R}$, a is in the interior of D, and $g(x) \neq 0$ for all $x \in D$. If f and g are both differentiable at a, then $\frac{f}{g}$ is differentiable at a and

$$\left(\frac{f}{g}\right)'(a) = \frac{g(a)f'(a) - f(a)g'(a)}{(g(a))^2}$$

Proof We have

$$\begin{pmatrix} \frac{f}{g} \end{pmatrix}'(a) = \lim_{h \to 0} \frac{\frac{f(a+h)}{g(a+h)} - \frac{f(a)}{g(a)}}{h}$$

$$= \lim_{h \to 0} \frac{f(a+h)g(a) - f(a)g(a+h)}{hg(a+h)g(a)}$$

$$= \lim_{h \to 0} \frac{f(a+h)g(a) - f(a)g(a) + f(a)g(a) - f(a)g(a+h)}{hg(a+h)g(a)}$$

$$= \lim_{h \to 0} \frac{g(a)\frac{f(a+h) - f(a)}{h} - f(a)\frac{g(a+h) - g(a)}{h}}{g(a+h)g(a)}$$

$$= \frac{g(a)f'(a) - f(a)g'(a)}{(g(a))^2},$$

where we know $\lim_{h\to 0} g(a+h) = g(a)$ by the continuity of g at a, which in turn follows from the assumption that g is differentiable at a.

Exercise 16.2.4

Show that for any integer $n \neq 0$, if $f(x) = x^n$, then $f'(x) = nx^{n-1}$.

The following proposition is called the *chain rule*.

Proposition Suppose $D \subset \mathbb{R}$, $E \subset \mathbb{R}$, $g : D \to \mathbb{R}$, $f : E \to \mathbb{R}$, $g(D) \subset E$, g is differentiable at a, and f is differentiable at g(a). Then $f \circ g$ is differentiable at a and

$$(f \circ g)'(a) = f'(g(a))g'(a).$$

Proof Choose $\delta > 0$ such that $(a - \delta, a + \delta) \subset D$ and $\epsilon > 0$ such that $(g(a) - \epsilon, g(a) + \epsilon) \subset E$. Define $\varphi : (-\delta, \delta) \to \mathbb{R}$ by

$$\varphi(h) = \begin{cases} \frac{g(a+h) - g(a) - g'(a)h}{h}, & \text{if } h \neq 0, \\ 0, & \text{if } h = 0, \end{cases}$$

and $\psi : (-\epsilon, \epsilon) \to \mathbb{R}$ by

$$\psi(h) = \begin{cases} \frac{f(g(a)+h) - f(g(a)) - f'(g(a))h}{h}, & \text{if } h \neq 0, \\ 0, & \text{if } h = 0. \end{cases}$$

The assumption that g is differentiable at a implies that φ is continuous at 0 and the assumption that f is differentiable at g(a) implies that ψ is continuous at 0. Moreover, note that

$$g(a+h) = h\varphi(h) + g'(a)h + g(a)$$

for $h \in (-\delta, \delta)$ and

$$f(g(a) + h)) = h\psi(h) + f'(g(a))h + f(g(a))$$

for $h \in (-\epsilon, \epsilon)$. Hence

$$f(g(a+h)) = f(h\varphi(h) + g'(a)h + g(a))$$

for $h \in (-\delta, \delta)$. Now

$$\lim_{h \to 0} (h\varphi(h) + g'(a)h) = 0,$$

so we may choose $\gamma > 0$ so that $\gamma \leq \delta$ and

$$h\varphi(h) + g'(a)h < \epsilon$$

whenever $h \in (-\gamma, \gamma)$. Then

$$f(g(a+h)) = (h\varphi(h) + g'(a)h)\psi(h\varphi(h) + g'(a)h) + f'(g(a))(h\varphi(h) + g'(a)h) + f(g(a)),$$

 \mathbf{SO}

$$f(g(a+h)) - f(g(a)) = (h\varphi(h) + g'(a)h)\psi(h\varphi(h) + g'(a)h) + f'(g(a))(h\varphi(h) + g'(a)h)$$

= $h\varphi(h)\psi(h\varphi(h) + g'(a)h) + hg'(a)\psi(h\varphi(h) + g'(a)h)$
+ $f'(g(a))\varphi(h)h + f'(g(a))g'(a)h.$

Hence

$$\frac{f(g(a+h)) - f(g(a))}{h} = f'(g(a))g'(a) + \varphi(h)\psi(h\varphi(h) + g'(a)h) + g'(a)\psi(h\varphi(h) + g'(a)h) + f'(g(a))\varphi(h).$$

Now

$$\lim_{h \to 0} \varphi(h) = 0,$$
$$\lim_{h \to 0} (h\varphi(h) + g'(a)h) = 0,$$

and, since φ and ψ are continuous at 0,

$$\lim_{h \to 0} \psi(h\varphi(h) + g'(a)h) = 0.$$

Thus

$$\lim_{h \to 0} \frac{f(g(a+h)) - f(g(a))}{h} = f'(g(a))g'(a).$$

Proposition Suppose $D \subset \mathbb{R}$, $f: D \to \mathbb{R}$ is one-to-one, a is in the interior of D, f^{-1} is continuous at f(a), and f is differentiable at a with $f'(a) \neq 0$. Then f^{-1} is differentiable at f(a) and

$$(f^{-1})'(f(a)) = \frac{1}{f'(a)}.$$

Proof Choose $\delta > 0$ so that $(f(a) - \delta, f(a) + \delta) \subset f(D)$. For $h \in (-\delta, \delta)$, let $k = f^{-1}(f(a) + h) - a$.

Then

$$f^{-1}(f(a) + h) = a + k,$$

 \mathbf{SO}

$$f(a) + h = f(a+k)$$

and

$$h = f(a+k) - f(a).$$

Hence

$$\frac{f^{-1}(f(a)+k) - f^{-1}(f(a))}{h} = \frac{a+k-a}{f(a+k) - f(a)} = \frac{1}{\frac{f(a+k) - f(a)}{k}}$$

Now if $h \to 0$, then $k \to 0$ (since f^{-1} is continuous at f(a)), and so

$$\lim_{h \to 0} \frac{f^{-1}(f(a) + k) - f^{-1}(f(a))}{h} = \lim_{k \to 0} \frac{1}{\frac{f(a+k) - f(a)}{k}} = \frac{1}{f'(a)}$$

Example For $n \in Z^+$, define $f : [0, +\infty) \to \mathbb{R}$ by $f(x) = \sqrt[n]{x}$. Then f is the inverse of $g : [0, +\infty) \to \mathbb{R}$ defined by $g(x) = x^n$. Thus, for any $x \in (0, +\infty)$,

$$f'(x) = \frac{1}{g'(f(x))} = \frac{1}{n(\sqrt[n]{x})^{n-1}} = \frac{1}{n}x^{\frac{1}{n}-1}.$$

Exercise 16.2.5

Show that for any rational $n \neq 0$, if $f(x) = x^n$, then $f'(x) = nx^{n-1}$.