Lecture 15: Consequences of Continuity

15.1 Intermediate Value Theorem

The following result is known as the Intermediate Value Theorem.
Theorem Suppose $a, b \in \mathbb{R}, a<b$, and $f:[a, b] \rightarrow \mathbb{R}$. If f is continuous and $s \in \mathbb{R}$ is such that either $f(a) \leq s \leq f(b)$ or $f(b) \leq s \leq f(a)$, then there exists $c \in[a, b]$ such that $f(c)=s$.

Proof Suppose $f(a)<f(b)$ and $f(a)<s<f(b)$. Let

$$
c=\sup \{x: x \in[a, b], f(x) \leq s\}
$$

Suppose $f(c)<s$. Then $c<b$ and, since f is continuous at c, there exists a $\delta>0$ such that $f(x)<s$ for all $x \in(c, c+\delta)$. But then

$$
f\left(c+\frac{\delta}{2}\right)<s
$$

contradicting the definition of c. Similarly, if $f(c)>s$, then $c>a$ and there exists $\delta>0$ such that $f(x)>s$ for all $x \in(c-\delta, c)$, again contradicting the definition of c. Hence we must have $f(c)=s$.
Example Suppose $a \in \mathbb{R}, a>0$, and consider $f(x)=x^{n}-a$ where $n \in \mathbb{Z}, n>1$. Then $f(0)=-a<0$ and

$$
\begin{aligned}
f(1+a) & =(1+a)^{n}-a \\
& =1+n a+\sum_{i=2}^{n}\binom{n}{i} a^{i}-a \\
& =1+(n-1) a+\sum_{i=2}^{n}\binom{n}{i} a^{i}>0
\end{aligned}
$$

where

$$
\binom{n}{i}=\frac{n!}{i!(n-i)!}
$$

Hence, by the Intermediate Value Theorem, there exists a real number $\gamma>0$ such that $\gamma^{n}=a$. We call γ the nth root of a, and write

$$
\gamma=\sqrt[n]{a}
$$

or

$$
\gamma=a^{\frac{1}{n}}
$$

Moreover, if $a \in \mathbb{R}, a<0, n \in Z^{+}$is odd, and γ is the nth root of $-a$, then

$$
(-\gamma)^{n}=(-1)^{n}(\gamma)^{n}=(-1)(-a)=a
$$

That is, $-\gamma$ is the nth root of a.
Definition If $n=\frac{p}{q} \in \mathbb{Q}$ with $q \in \mathbb{Z}^{+}$, then we define

$$
x^{n}=(\sqrt[q]{x})^{p}
$$

for all real $x \geq 0$.

Exercise 15.1.1

Explain why the equation $x^{5}+4 x^{2}-16=0$ has a solution in the interval $(0,2)$.

Exercise 15.1.2

Give an example of a closed interval $[a, b], a, b \in \mathbb{R}$ and a function $f:[a, b] \rightarrow \mathbb{R}$ which do not satisfy the conclusion of the Intermediate Value Theorem.

Exercise 15.1.3

Show that if $I \subset \mathbb{R}$ is an interval and $f: I \rightarrow \mathbb{R}$ is continuous, then $f(I)$ is an interval.

Exercise 15.1.4

Suppose $f:(a, b) \rightarrow \mathbb{R}$ is continuous and strictly monotonic. Let $(c, d)=f((a, b))$. Show that $f^{-1}:(c, d) \rightarrow(a, b)$ is strictly monotonic and continuous.

Exercise 15.1.5
Let $n \in \mathbb{Z}^{+}$. Show that the function $f(x)=\sqrt[n]{x}$ is continuous on $(0,+\infty)$.

Exercise 15.1.6

Use the method of bisection to give another proof of the Intermediate Value Theorem.

15.2 Extreme Value Theorem

Theorem Suppose $D \subset \mathbb{R}$ is compact and $f: D \rightarrow \mathbb{R}$ is continuous. Then $f(D)$ is compact.

Proof Given a sequence $\left\{y_{n}\right\}_{n \in I}$ in $f(D)$, choose a sequence $\left\{x_{n}\right\}_{n \in I}$ such that $f\left(x_{n}\right)=$ y_{n}. Since D is compact, $\left\{x_{n}\right\}_{n \in I}$ has a convergent subsequence $\left\{x_{n_{k}}\right\}_{k=1}^{\infty}$ with

$$
\lim _{k \rightarrow \infty} x_{n_{k}}=x \in D
$$

Let $y=f(x)$. Then $y \in f(D)$ and, since f is continuous,

$$
y=\lim _{k \rightarrow \infty} f\left(x_{n_{k}}\right)=\lim _{k \rightarrow \infty} y_{n_{k}} .
$$

Hence $f(D)$ is compact.

Exercise 15.2.1

Proof the previous theorem using the open cover definition of a compact set.
The following theorem is known as the Extreme Value Theorem.
Theorem Suppose $D \subset \mathbb{R}$ is compact and $f: D \rightarrow \mathbb{R}$ is continuous. Then there exists $a \in D$ such that $f(a) \geq f(x)$ for all $x \in D$ and there exists $b \in D$ such that $f(b) \leq f(x)$ for all $x \in D$.

Proof Let $s=\sup f(D)$ and $t=\inf f(D)$. Then $s \in f(D)$, so there exists $a \in D$ such that $f(a)=s$, and $t \in f(D)$, so there exists $b \in D$ such that $f(b)=t$.

As a consequence of the Extreme Value Theorem, a continuous function on a closed bounded interval attains both a maximum and a minimum value.

Exercise 15.2.2

Find an example of a closed bounded interval $[a, b]$ and a function $f:[a, b] \rightarrow \mathbb{R}$ such that f attains neither a maximum nor a minimum value on $[a, b]$.

Exercise 15.2.3

Find an example of a bounded interval I and a function $f: I \rightarrow \mathbb{R}$ which is continuous on I such that f attains neither a maximum nor a minimum value on I.

Exercise 15.2.4
Suppose $K \subset \mathbb{R}$ is compact and $a \notin K$. Show that there exists $b \in K$ such that $|b-a| \leq$ $|x-a|$ for all $x \in K$.

Proposition Suppose $D \subset \mathbb{R}$ is compact, $f: D \rightarrow \mathbb{R}$ is one-to-one, and $E=f(D)$. Then $f^{-1}: E \rightarrow D$ is continuous.

Proof Let $V \subset \mathbb{R}$ be an open set. We need to show that $f(V \cap D)=U \cap E$ for some open set $U \subset \mathbb{R}$. Let $C=D \cap(\mathbb{R} \backslash V)$. Then C is a closed subset of D, and so is compact. Hence $f(C)$ is a compact subset of E. Thus $f(C)$ is closed, and so $U=\mathbb{R} \backslash f(C)$ is open. Moreover, $U \cap E=E \backslash f(C)=f(V \cap D)$. Thus f^{-1} is continuous.

Exercise 15.2.5

Suppose $f:[0,1] \cup(2,3] \rightarrow[0,2]$ by

$$
f(x)= \begin{cases}x, & \text { if } 0 \leq x \leq 1 \\ x-1, & \text { if } 2<x \leq 3\end{cases}
$$

Show that f is continuous, one-to-one, and onto, but that f^{-1} is not continuous.

15.3 Uniform continuity

Definition Suppose $D \subset \mathbb{R}$ and $f: D \rightarrow \mathbb{R}$. We say f is uniformly continuous on D if for every $\epsilon>0$ there exists $\delta>0$ such that for any $x, y \in D$,

$$
|f(x)-f(y)|<\epsilon
$$

whenever $|x-y|<\delta$.

Exercise 15.3.1

Suppose $D \subset \mathbb{R}$ and $f: D \rightarrow \mathbb{R}$ is Lipschitz. Show that f is uniformly continuous on D.
Clearly, if f is uniformly continuous on D then f is continuous on D. However, a continuous function need not be uniformly continuous.

Example Define $f:(0,+\infty)$ by $f(x)=\frac{1}{x}$. Given any $\delta>0$, choose $n \in \mathbb{Z}^{+}$such that $\frac{1}{n(n+1)}<\delta$. Let $x=\frac{1}{n}$ and $y=\frac{1}{n+1}$. Then

$$
|x-y|=\frac{1}{n}-\frac{1}{n+1}=\frac{1}{n(n+1)}<\delta .
$$

However,

$$
|f(x)-f(y)|=|n-(n+1)|=1
$$

Hence, for example, there does not exist a $\delta>0$ such that

$$
|f(x)-f(y)|<\frac{1}{2}
$$

whenever $|x-y|<\delta$. Thus f is not uniformly continuous on $(0,+\infty)$, although f is continuous on $(0,+\infty)$.
Example Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=2 x$. Let $\epsilon>0$ be given. If $\delta=\frac{\epsilon}{2}$, then

$$
|f(x)-f(y)|=2|x-y|<\epsilon
$$

whenever $|x-y|<\delta$. Hence f is uniformly continuous on \mathbb{R}.

Exercise 15.3.2

Show that $f(x)=x^{2}$ is not uniformly continuous on $(-\infty,+\infty)$.
Proposition Suppose $D \subset \mathbb{R}$ is compact and $f: D \rightarrow \mathbb{R}$ is continuous. Then f is uniformly continuous on D.

Proof Let $\epsilon>0$ be given. For every $x \in D$, choose δ_{x} such that

$$
|f(x)-f(y)|<\frac{\epsilon}{2}
$$

whenever $y \in D$ and $|x-y|<\delta_{x}$. Let

$$
J_{x}=\left(x-\frac{\delta_{x}}{2}, x+\frac{\delta_{x}}{2}\right) .
$$

Then $\left\{J_{x}: x \in D\right\}$ is an open cover of D. Since D is compact, there must exist $x_{1}, x_{2}, \ldots, x_{n}, n \in Z^{+}$, such that $J_{x_{1}}, J_{x_{2}}, \ldots, J_{x_{n}}$ is an open cover of D. Let δ be the smallest of

$$
\frac{\delta_{x_{1}}}{2}, \frac{\delta_{x_{2}}}{2}, \ldots, \frac{\delta_{x_{n}}}{2}
$$

Now let $x, y \in D$ with $|x-y|<\delta$. Then for some integer $k, 1 \leq k \leq n, x \in J_{x_{k}}$, that is,

$$
\left|x-x_{k}\right|<\frac{\delta_{x_{k}}}{2}
$$

Moreover,

$$
\left|y-x_{k}\right| \leq|y-x|+\left|x-x_{k}\right|<\delta+\frac{\delta_{x_{k}}}{2} \leq \delta_{x_{k}} .
$$

Thus

$$
|f(x)-f(y)| \leq\left|f(x)-f\left(x_{k}\right)\right|+\left|f\left(x_{k}\right)-f(y)\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

Exercise 15.3.3

Suppose $D \subset \mathbb{R}$ and $f: D \rightarrow \mathbb{R}$ is uniformly continuous. Show that if $\left\{x_{n}\right\}_{n \in I}$ is a Cauchy sequence in D, then $\left\{f\left(x_{n}\right)\right\}_{n \in I}$ is a Cauchy sequence in $f(D)$.

Exercise 15.3.4

Suppose $f:(0,1) \rightarrow \mathbb{R}$ is uniformly continuous. Show that $f(0+)$ exists.

Exercise 15.3.5

Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and $\lim _{x \rightarrow-\infty} f(x)=0$ and $\lim _{x \rightarrow+\infty} f(x)=0$. Show that f is uniformly continuous.

