Lecture 15: Consequences of Continuity

15.1 Intermediate Value Theorem

The following result is known as the Intermediate Value Theorem.

Theorem Suppose $a, b \in \mathbb{R}$, a < b, and $f : [a, b] \to \mathbb{R}$. If f is continuous and $s \in \mathbb{R}$ is such that either $f(a) \leq s \leq f(b)$ or $f(b) \leq s \leq f(a)$, then there exists $c \in [a, b]$ such that f(c) = s.

Proof Suppose f(a) < f(b) and f(a) < s < f(b). Let

$$c = \sup\{x : x \in [a, b], f(x) \le s\}.$$

Suppose f(c) < s. Then c < b and, since f is continuous at c, there exists a $\delta > 0$ such that f(x) < s for all $x \in (c, c + \delta)$. But then

$$f\left(c + \frac{\delta}{2}\right) < s,$$

contradicting the definition of c. Similarly, if f(c) > s, then c > a and there exists $\delta > 0$ such that f(x) > s for all $x \in (c - \delta, c)$, again contradicting the definition of c. Hence we must have f(c) = s.

Example Suppose $a \in \mathbb{R}$, a > 0, and consider $f(x) = x^n - a$ where $n \in \mathbb{Z}$, n > 1. Then f(0) = -a < 0 and $f(1 + a) = (1 + a)^n - a$

$$1 + a) = (1 + a)^{n} - a$$

= 1 + na + $\sum_{i=2}^{n} {n \choose i} a^{i} - a$
= 1 + (n - 1)a + $\sum_{i=2}^{n} {n \choose i} a^{i} > 0$,

where

$$\binom{n}{i} = \frac{n!}{i!(n-i)!}.$$

Hence, by the Intermediate Value Theorem, there exists a real number $\gamma > 0$ such that $\gamma^n = a$. We call γ the *nth root* of a, and write

$$\gamma = \sqrt[n]{a},$$

or

$$\gamma = a^{\frac{1}{n}}.$$

Moreover, if $a \in \mathbb{R}$, a < 0, $n \in Z^+$ is odd, and γ is the *n*th root of -a, then

$$(-\gamma)^n = (-1)^n (\gamma)^n = (-1)(-a) = a$$

That is, $-\gamma$ is the *n*th root of *a*.

Definition If $n = \frac{p}{q} \in \mathbb{Q}$ with $q \in \mathbb{Z}^+$, then we define

$$x^n = (\sqrt[q]{x})^p$$

for all real $x \ge 0$.

Exercise 15.1.1

Explain why the equation $x^5 + 4x^2 - 16 = 0$ has a solution in the interval (0, 2).

Exercise 15.1.2

Give an example of a closed interval $[a, b], a, b \in \mathbb{R}$ and a function $f : [a, b] \to \mathbb{R}$ which do not satisfy the conclusion of the Intermediate Value Theorem.

Exercise 15.1.3

Show that if $I \subset \mathbb{R}$ is an interval and $f: I \to \mathbb{R}$ is continuous, then f(I) is an interval.

Exercise 15.1.4

Suppose $f : (a, b) \to \mathbb{R}$ is continuous and strictly monotonic. Let (c, d) = f((a, b)). Show that $f^{-1} : (c, d) \to (a, b)$ is strictly monotonic and continuous.

Exercise 15.1.5

Let $n \in \mathbb{Z}^+$. Show that the function $f(x) = \sqrt[n]{x}$ is continuous on $(0, +\infty)$.

Exercise 15.1.6

Use the method of bisection to give another proof of the Intermediate Value Theorem.

15.2 Extreme Value Theorem

Theorem Suppose $D \subset \mathbb{R}$ is compact and $f : D \to \mathbb{R}$ is continuous. Then f(D) is compact.

Proof Given a sequence $\{y_n\}_{n \in I}$ in f(D), choose a sequence $\{x_n\}_{n \in I}$ such that $f(x_n) = y_n$. Since D is compact, $\{x_n\}_{n \in I}$ has a convergent subsequence $\{x_{n_k}\}_{k=1}^{\infty}$ with

$$\lim_{k \to \infty} x_{n_k} = x \in D.$$

Let y = f(x). Then $y \in f(D)$ and, since f is continuous,

$$y = \lim_{k \to \infty} f(x_{n_k}) = \lim_{k \to \infty} y_{n_k}.$$

Hence f(D) is compact.

Exercise 15.2.1

Proof the previous theorem using the open cover definition of a compact set.

The following theorem is known as the Extreme Value Theorem.

Theorem Suppose $D \subset \mathbb{R}$ is compact and $f: D \to \mathbb{R}$ is continuous. Then there exists $a \in D$ such that $f(a) \geq f(x)$ for all $x \in D$ and there exists $b \in D$ such that $f(b) \leq f(x)$ for all $x \in D$.

Proof Let $s = \sup f(D)$ and $t = \inf f(D)$. Then $s \in f(D)$, so there exists $a \in D$ such that f(a) = s, and $t \in f(D)$, so there exists $b \in D$ such that f(b) = t.

As a consequence of the Extreme Value Theorem, a continuous function on a closed bounded interval attains both a maximum and a minimum value.

Exercise 15.2.2

Find an example of a closed bounded interval [a, b] and a function $f : [a, b] \to \mathbb{R}$ such that f attains neither a maximum nor a minimum value on [a, b].

Exercise 15.2.3

Find an example of a bounded interval I and a function $f: I \to \mathbb{R}$ which is continuous on I such that f attains neither a maximum nor a minimum value on I.

Exercise 15.2.4

Suppose $K \subset \mathbb{R}$ is compact and $a \notin K$. Show that there exists $b \in K$ such that $|b - a| \leq |x - a|$ for all $x \in K$.

Proposition Suppose $D \subset \mathbb{R}$ is compact, $f : D \to \mathbb{R}$ is one-to-one, and E = f(D). Then $f^{-1} : E \to D$ is continuous.

Proof Let $V \subset \mathbb{R}$ be an open set. We need to show that $f(V \cap D) = U \cap E$ for some open set $U \subset \mathbb{R}$. Let $C = D \cap (\mathbb{R} \setminus V)$. Then C is a closed subset of D, and so is compact. Hence f(C) is a compact subset of E. Thus f(C) is closed, and so $U = \mathbb{R} \setminus f(C)$ is open. Moreover, $U \cap E = E \setminus f(C) = f(V \cap D)$. Thus f^{-1} is continuous.

Exercise 15.2.5 Suppose $f : [0,1] \cup (2,3] \rightarrow [0,2]$ by

$$f(x) = \begin{cases} x, & \text{if } 0 \le x \le 1, \\ x - 1, & \text{if } 2 < x \le 3. \end{cases}$$

Show that f is continuous, one-to-one, and onto, but that f^{-1} is not continuous.

15.3 Uniform continuity

Definition Suppose $D \subset \mathbb{R}$ and $f : D \to \mathbb{R}$. We say f is uniformly continuous on D if for every $\epsilon > 0$ there exists $\delta > 0$ such that for any $x, y \in D$,

$$|f(x) - f(y)| < \epsilon$$

whenever $|x - y| < \delta$.

Exercise 15.3.1

Suppose $D \subset \mathbb{R}$ and $f: D \to \mathbb{R}$ is Lipschitz. Show that f is uniformly continuous on D.

Clearly, if f is uniformly continuous on D then f is continuous on D. However, a continuous function need not be uniformly continuous.

Example Define $f: (0, +\infty)$ by $f(x) = \frac{1}{x}$. Given any $\delta > 0$, choose $n \in \mathbb{Z}^+$ such that $\frac{1}{n(n+1)} < \delta$. Let $x = \frac{1}{n}$ and $y = \frac{1}{n+1}$. Then

$$|x - y| = \frac{1}{n} - \frac{1}{n+1} = \frac{1}{n(n+1)} < \delta.$$

However,

$$|f(x) - f(y)| = |n - (n + 1)| = 1.$$

Hence, for example, there does not exist a $\delta > 0$ such that

$$|f(x) - f(y)| < \frac{1}{2}$$

whenever $|x - y| < \delta$. Thus f is not uniformly continuous on $(0, +\infty)$, although f is continuous on $(0, +\infty)$.

Example Define $f : \mathbb{R} \to \mathbb{R}$ by f(x) = 2x. Let $\epsilon > 0$ be given. If $\delta = \frac{\epsilon}{2}$, then

$$|f(x) - f(y)| = 2|x - y| < \epsilon$$

whenever $|x - y| < \delta$. Hence f is uniformly continuous on \mathbb{R} .

Exercise 15.3.2

Show that $f(x) = x^2$ is not uniformly continuous on $(-\infty, +\infty)$.

Proposition Suppose $D \subset \mathbb{R}$ is compact and $f : D \to \mathbb{R}$ is continuous. Then f is uniformly continuous on D.

Proof Let $\epsilon > 0$ be given. For every $x \in D$, choose δ_x such that

$$|f(x) - f(y)| < \frac{\epsilon}{2}$$

whenever $y \in D$ and $|x - y| < \delta_x$. Let

$$J_x = (x - \frac{\delta_x}{2}, x + \frac{\delta_x}{2}).$$

Then $\{J_x : x \in D\}$ is an open cover of D. Since D is compact, there must exist $x_1, x_2, \ldots, x_n, n \in Z^+$, such that $J_{x_1}, J_{x_2}, \ldots, J_{x_n}$ is an open cover of D. Let δ be the smallest of

$$\frac{\delta_{x_1}}{2}, \frac{\delta_{x_2}}{2}, \dots, \frac{\delta_{x_n}}{2}.$$

Now let $x, y \in D$ with $|x - y| < \delta$. Then for some integer $k, 1 \le k \le n, x \in J_{x_k}$, that is,

$$|x - x_k| < \frac{\delta_{x_k}}{2}.$$

Moreover,

$$|y - x_k| \le |y - x| + |x - x_k| < \delta + \frac{\delta_{x_k}}{2} \le \delta_{x_k}.$$

Thus

$$|f(x) - f(y)| \le |f(x) - f(x_k)| + |f(x_k) - f(y)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Exercise 15.3.3

Suppose $D \subset \mathbb{R}$ and $f : D \to \mathbb{R}$ is uniformly continuous. Show that if $\{x_n\}_{n \in I}$ is a Cauchy sequence in D, then $\{f(x_n)\}_{n \in I}$ is a Cauchy sequence in f(D).

Exercise 15.3.4

Suppose $f: (0,1) \to \mathbb{R}$ is uniformly continuous. Show that f(0+) exists.

Exercise 15.3.5

Suppose $f : \mathbb{R} \to \mathbb{R}$ is continuous and $\lim_{x \to -\infty} f(x) = 0$ and $\lim_{x \to +\infty} f(x) = 0$. Show that f is uniformly continuous.