Lecture 13: More on Limits of Functions

13.1 Equivalent forms of the definitions

Proposition Suppose $D \subset \mathbb{R}, a$ is a limit point of D, and $f: D \rightarrow \mathbb{R}$. Then $\lim _{x \rightarrow a} f(x)=L$ if and only if for every $\epsilon>0$ there exists a $\delta>0$ such that

$$
|f(x)-L|<\epsilon
$$

whenever $x \neq a$ and

$$
x \in(a-\delta, a+\delta) \cap D
$$

Proof Suppose $\lim _{x \rightarrow a} f(x)=L$. Suppose there exists an $\epsilon>0$ such that for every $\delta>0$ there exists $x \in(a-\delta, a+\delta) \cap D, x \neq a$, for which $|f(x)-L| \geq \epsilon$. For $n=1,2,3, \ldots$, choose

$$
x_{n} \in\left(a-\frac{1}{n}, a+\frac{1}{n}\right) \cap D
$$

$x_{n} \neq a$, such that $\left|f\left(x_{n}\right)-L\right| \geq \epsilon$. Then $\left\{x_{n}\right\}_{n=1}^{\infty} \in S(D, a)$, but $\left\{f\left(x_{n}\right)\right\}_{n=1}^{\infty}$ does not converge to L, contradicting the assumption that $\lim _{x \rightarrow a} f(x)=L$.

Now suppose that for every $\epsilon>0$ there exists $\delta>0$ such that $|f(x)-L|<\epsilon$ whenever $x \neq a$ and $x \in(a-\delta, a+\delta) \cap D$. Let $\left\{x_{n}\right\}_{n \in I} \in S(D, a)$. Given $\epsilon>0$, let $\delta>0$ be such that $|f(x)-L|<\epsilon$ whenever $x \neq a$ and $x \in(a-\delta, a+\delta) \cap D$. Choose $N \in \mathbb{Z}$ such that $\left|x_{n}-a\right|<\delta$ whenever $n>N$. It follows that $\left|f\left(x_{n}\right)-L\right|<\epsilon$ for all $n>N$. Hence $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=L$, and so $\lim _{x \rightarrow a} f(x)=L$.

The following two propositions are proven analogously.
Proposition Suppose $D \subset \mathbb{R}, a$ is a limit point of $D, f: D \rightarrow \mathbb{R}$, and $S^{-}(D, a) \neq \emptyset$. Then $\lim _{x \rightarrow a^{-}} f(x)=L$ if and only if for every $\epsilon>0$ there exists a $\delta>0$ such that

$$
|f(x)-L|<\epsilon
$$

whenever

$$
x \in(a-\delta, a) \cap D
$$

Proposition Suppose $D \subset \mathbb{R}, a$ is a limit point of $D, f: D \rightarrow \mathbb{R}$, and $S^{+}(D, a) \neq \emptyset$. Then $\lim _{x \rightarrow a^{+}} f(x)=L$ if and only if for every $\epsilon>0$ there exists a $\delta>0$ such that

$$
|f(x)-L|<\epsilon
$$

whenever

$$
x \in(a, a+\delta) \cap D
$$

13.2 Examples

Example Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}1, & \text { if } x \text { is rational, } \\ 0, & \text { if } x \text { is irrational }\end{cases}
$$

Let $a \in \mathbb{R}$. Since every open interval contains both rational and irrational numbers, for any $\delta>0$ and any choice of $L \in \mathbb{R}$, there will exist $x \in(a-\delta, a+\delta), x \neq a$, such that

$$
|f(x)-L| \geq \frac{1}{2}
$$

Hence $\lim _{x \rightarrow a} f(x)$ does not exist for any real number a.
Example Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}x, & \text { if } x \text { is rational, } \\ 0, & \text { if } x \text { is irrational }\end{cases}
$$

Then $\lim _{x \rightarrow 0} f(x)=0$ since, given $\epsilon>0,|f(x)|<\epsilon$ provided $|x|<\epsilon$.

Exercise 13.2.1

Show that if f is as given in the previous example and $a \neq 0$, then $\lim _{x \rightarrow a} f(x)$ does not exist.

Exercise 13.2.2

Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}\frac{1}{q}, & \text { if } x \text { is rational and } x=\frac{p}{q} \\ 0, & \text { if } x \text { is irrational }\end{cases}
$$

where p and q are taken to be relatively prime integers with $q>0$, and we take $q=1$ when $x=0$. Show that, for any real number $a, \lim _{x \rightarrow a} f(x)=0$.
Example Define $\varphi:[0,1] \rightarrow[-1,1]$ by

$$
\varphi(x)= \begin{cases}4 x, & \text { if } 0 \leq x \leq \frac{1}{4} \\ 2-4 x, & \text { if } \frac{1}{4}<x<\frac{3}{4} \\ 4 x-4, & \text { if } \frac{3}{4} \leq x \leq 1\end{cases}
$$

Next define $s: \mathbb{R} \rightarrow \mathbb{R}$ by $s(x)=\varphi(x-\lfloor x\rfloor)$, where $\lfloor x\rfloor$ denotes the largest integer less than or equal to x (that is, $\lfloor x\rfloor$ is the floor of x). The function s is an example of a sawtooth function. Note that for any $n \in \mathbb{Z}$,

$$
s([n, n+1])=[-1,1] .
$$

Finally, let $D=\mathbb{R} \backslash\{0\}$ and define $f: D \rightarrow \mathbb{R}$ by

$$
f(x)=s\left(\frac{1}{x}\right)
$$

Note that for any $n \in \mathbb{Z}^{+}$,

$$
f\left(\left[\frac{1}{n+1}, \frac{1}{n}\right]\right)=s([n, n+1])=[-1,1] .
$$

Hence for any $\epsilon>0, f((0, \epsilon))=[-1,1]$, and so $\lim _{x \rightarrow 0^{+}} f(x)$ does not exist. Similarly, neither $\lim _{x \rightarrow 0^{-}} f(x)$ nor $\lim _{x \rightarrow 0} f(x)$ exist.
Example Let s be the sawtooth function of the previous example and let $D=\mathbb{R} \backslash\{0\}$. Define $f: D \rightarrow \mathbb{R}$ by

$$
f(x)=x s\left(\frac{1}{x}\right)
$$

Then for all $x \in D$,

$$
-|x| \leq f(x) \leq|x|
$$

and so $\lim _{x \rightarrow 0} f(x)=0$ by the squeeze theorem.
Definition Let $D \subset \mathbb{R}$ and $f: D \rightarrow \mathbb{R}$. We say f is bounded if there exists a real number B such that $|f(x)| \leq B$ for all $x \in D$.

Exercise 13.2.3

Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is bounded. Show that $\lim _{x \rightarrow 0} x f(x)=0$.

13.3 Monotonic functions

Definition Suppose $D \subset \mathbb{R}, f: D \rightarrow \mathbb{R}$, and $(a, b) \subset D$. We say f is increasing on (a, b) if $f(x)<f(y)$ whenever $a<x<y<b$; we say f is decreasing on (a, b) if $f(x)>f(y)$ whenever $a<x<y<b$; we say f is nondecreasing on (a, b) if $f(x) \leq f(y)$ whenever $a<x<y<b$; and we say f is nonincreasing on (a, b) if $f(x) \geq f(y)$ whenever $a<x<y<b$. We will say f is monotonic on (a, b) if f is either nondecreasing or nonincreasing on (a, b) and we will say f is strictly monotonic on (a, b) if f is either increasing or decreasing on (a, b).
Proposition If f is monotonic on (a, b), then $f(c+)$ and $f(c-)$ exist for every $c \in(a, b)$.
Proof Suppose f is nondecreasing on (a, b). Let $c \in(a, b)$. Let

$$
\lambda=\sup \{f(x): a<x<c\} .
$$

Note that $\lambda \leq f(c)<+\infty$. Given any $\epsilon>0$, there must exist $\delta>0$ such that

$$
\lambda-\epsilon<f(c-\delta) \leq \lambda
$$

Since f is nondecreasing, it follows that

$$
|f(x)-\lambda|<\epsilon
$$

whenever $x \in(c-\delta, c)$. Thus $f(c-)=\lambda$. A similar argument shows that $f(c+)=\kappa$ where

$$
\kappa=\inf \{f(x): c<x<b\} .
$$

If f is nonincreasing, similar arguments yield

$$
f(c-)=\inf \{f(x): a<x<c\}
$$

and

$$
f(c+)=\sup \{f(x): c<x<b\} .
$$

Proposition If f is nondecreasing on (a, b) and $a<x<y<b$, then

$$
f(x+) \leq f(y-)
$$

Proof By the previous proposition,

$$
f(x+)=\inf \{f(t): x<t<b\}
$$

and

$$
f(y-)=\sup \{f(t): a<t<y\} .
$$

Since f is nondecreasing,

$$
\inf \{f(t): x<t<b\}=\inf \{f(t): x<t<y\}
$$

and

$$
\sup \{f(t): a<t<y\}=\sup \{f(t): x<t<y\} .
$$

Thus

$$
f(x+)=\inf \{f(t): x<t<y\} \leq \sup \{f(t): x<t<y\}=f(y-)
$$

Exercise 13.3.1

Let $\varphi: \mathbb{Q} \cap[0,1] \rightarrow \mathbb{Z}^{+}$be a one-to-one correspondence. Define $f:[0,1] \rightarrow \mathbb{R}$ by

$$
f(x)=\sum_{\substack{q \in \mathbb{Q}_{n}[0,1] \\ q \leq x}} \frac{1}{2^{\varphi(q)}} .
$$

(a) Show that f is increasing on $(0,1)$.
(b) Show that for any $x \in \mathbb{Q} \cap(0,1), f(x-)<f(x)$ and $f(x+)=f(x)$.
(c) Show that for any irrational $a, 0<a<1, \lim _{x \rightarrow a} f(x)=f(a)$.

13.4 Limits to infinity and infinite limits

Definition Let $D \subset \mathbb{R}, f: D \rightarrow \mathbb{R}$, and suppose a is a limit point of D. We say that that f diverges to $+\infty$ as x approaches a, denoted

$$
\lim _{x \rightarrow a} f(x)=+\infty
$$

if for every real number M there exists a $\delta>0$ such that

$$
f(x)>M
$$

whenever $x \neq a$ and

$$
x \in(a-\delta, a+\delta) \cap D
$$

Similarly, we say that that f diverges to $-\infty$ as x approaches a, denoted

$$
\lim _{x \rightarrow a} f(x)=-\infty
$$

if for every real number M there exists a $\delta>0$ such that

$$
f(x)<M
$$

whenever $x \neq a$ and

$$
x \in(a-\delta, a+\delta) \cap D
$$

Exercise 13.4.1

Write definitions for $\lim _{x \rightarrow a^{+}} f(x)=+\infty, \lim _{x \rightarrow a^{-}} f(x)=+\infty, \lim _{x \rightarrow a^{+}} f(x)=-\infty$, and $\lim _{x \rightarrow a^{-}} f(x)=-\infty$. Model your definitions on the preceding definitions.
Exercise 13.4.2
Show that $\lim _{x \rightarrow 4^{+}} \frac{7}{4-x}=-\infty$ and $\lim _{x \rightarrow 4^{-}} \frac{7}{4-x}=+\infty$
Definition Suppose $D \subset \mathbb{R}$ does not have an upper bound, $f: D \rightarrow \mathbb{R}$, and $L \in \mathbb{R}$. We say that the limit of f as x approaches $+\infty$ is L, denoted

$$
\lim _{x \rightarrow+\infty} f(x)=L
$$

if for every $\epsilon>0$ there exists a real number M such that

$$
|f(x)-L|<\epsilon
$$

whenever $x \in(M,+\infty) \cap D$.
Definition Suppose $D \subset \mathbb{R}$ does not have an lower bound, $f: D \rightarrow \mathbb{R}$, and $L \in \mathbb{R}$. We say that the limit of f as x approaches $-\infty$ is L, denoted

$$
\lim _{x \rightarrow-\infty} f(x)=L
$$

if for every $\epsilon>0$ there exists a real number M such that

$$
|f(x)-L|<\epsilon
$$

whenever $x \in(-\infty, M) \cap D$.

Exercise 13.4.3

Verify that $\lim _{x \rightarrow+\infty} \frac{x+1}{x+2}=1$.

Exercise 13.4.4

Provide definitions for $\lim _{x \rightarrow+\infty} f(x)=+\infty, \lim _{x \rightarrow+\infty} f(x)=-\infty, \lim _{x \rightarrow-\infty} f(x)=+\infty$, and $\lim _{x \rightarrow-\infty} f(x)=-\infty$. Model your definitions on the preceding definitions.

Exercise 13.4.5

Suppose

$$
f(x)=a x^{3}+b x^{2}+c x+d,
$$

where $a, b, c, d \in \mathbb{R}$ and $a>0$. Show that $\lim _{x \rightarrow+\infty} f(x)=+\infty$ and $\lim _{x \rightarrow-\infty} f(x)=-\infty$.

