Lecture 12: Limits of Functions

12.1 Limits

Let $A \subset \mathbb{R}$ and let x be a limit point of A. In the following, it will be convenient to let $S(A, x)$ denote the set of all convergent sequences $\left\{x_{n}\right\}_{n \in I}$ such that $x_{n} \in A$ for all $n \in I$, $x_{n} \neq x$ for all $n \in I$, and $\lim _{n \rightarrow \infty} x_{n}=x$. We will let $S^{+}(A, x)$ be the subset of $S(A, x)$ of sequences $\left\{x_{n}\right\}_{n \in I}$ for which $x_{n}>x$ for all $n \in I$ and $S^{-}(A, x)$ be the subset of $S(A, x)$ of sequences $\left\{x_{n}\right\}_{n \in I}$ for which $x_{n}<x$ for all $n \in I$.

Definition Let $D \subset \mathbb{R}, f: D \rightarrow \mathbb{R}, L \in \mathbb{R}$, and suppose a is a limit point of D. We say the limit of f as x approaches a is L, denoted

$$
\lim _{x \rightarrow a} f(x)=L
$$

if for every sequence $\left\{x_{n}\right\}_{n \in I} \in S(D, a)$,

$$
\lim _{n \rightarrow \infty} f\left(x_{n}\right)=L
$$

If $S^{+}(D, a) \neq \emptyset$, we say the limit from the right of f as x approaches a is L, denoted

$$
\lim _{x \rightarrow a^{+}} f(x)=L
$$

if for every sequence $\left\{x_{n}\right\}_{n \in I} \in S^{+}(D, a)$,

$$
\lim _{n \rightarrow \infty} f\left(x_{n}\right)=L,
$$

and, if $S^{-}(D, a) \neq \emptyset$, we say the limit from the left of f as x approaches a is L, denoted

$$
\lim _{x \rightarrow a^{-}} f(x)=L
$$

if for every sequence $\left\{x_{n}\right\}_{n \in I} \in S^{-}(D, a)$,

$$
\lim _{n \rightarrow \infty} f\left(x_{n}\right)=L
$$

We may also denote $\lim _{x \rightarrow a} f(x)=L$ by writing $f(x) \rightarrow L$ as $x \rightarrow a$. We also let

$$
f(a+)=\lim _{x \rightarrow a^{+}} f(x)
$$

and

$$
f(a-)=\lim _{x \rightarrow a^{-}} f(x) .
$$

It should be clear that if $\lim _{x \rightarrow a} f(x)=L$ and $S^{+}(D, a) \neq \emptyset$, then $f(a+)=L$. Similarly, if $\lim _{x \rightarrow a} f(x)=L$ and $S^{-}(D, a) \neq \emptyset$, then $f(a-)=L$.

Proposition Suppose $D \subset \mathbb{R}, f: D \rightarrow \mathbb{R}$, and a is a limit point of D. If $f(a-)=$ $f(a+)=L$, then $\lim _{x \rightarrow a} f(x)=L$.
Proof Suppose $\left\{x_{n}\right\}_{n=m}^{\infty} \in S(D, a)$. Let

$$
J^{-}=\left\{n: n \in \mathbb{Z}, x_{n}<a\right\}
$$

and

$$
J^{+}=\left\{n: n \in \mathbb{Z}, x_{n}>a\right\} .
$$

Suppose J^{-}is empty or finite and let $k=m-1$ if $J^{-}=\emptyset$ and, otherwise, let k be the largest integer in J^{-}. Then $\left\{x_{n}\right\}_{n=k+1}^{\infty} \in S^{+}(D, a)$, and so

$$
\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(a+)=L
$$

A similar argument shows that if J^{+}is empty or finite, then

$$
\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(a-)=L
$$

If neither J^{-}nor J^{+}is finite or empty, then $\left\{x_{n}\right\}_{n \in J^{-}}$and $\left\{x_{n}\right\}_{n \in J^{+}}$are subsequences of $\left\{x_{n}\right\}_{n=m}^{\infty}$ with $\left\{x_{n}\right\}_{n \in J^{-}} \in S^{-}(D, a)$ and $\left\{x_{n}\right\}_{n \in J^{+}} \in S^{+}(D, a)$. Hence, given any $\epsilon>0$, we may find integers N and M such that

$$
\left|f\left(x_{n}\right)-L\right|<\epsilon
$$

whenever $n \in\left\{j: j \in J^{-}, j>N\right\}$ and

$$
\left|f\left(x_{n}\right)-L\right|<\epsilon
$$

whenever $n \in\left\{j: j \in J^{+}, j>M\right\}$. Let P be the larger of N and M. Since $J^{-} \cup J^{+}=$ $\left\{j: j \in \mathbb{Z}^{+}, j \geq m\right\}$, it follows that

$$
\left|f\left(x_{n}\right)-L\right|<\epsilon
$$

whenever $n>P$. Hence $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=L$, and so $\lim _{x \rightarrow a} f(x)=L$.
Proposition Suppose $D \subset \mathbb{R}, a$ is a limit point of D, and $f: D \rightarrow \mathbb{R}$. If $\lim _{x \rightarrow a} f(x)=L$ and $\alpha \in \mathbb{R}$, then

$$
\lim _{x \rightarrow a} \alpha f(x)=\alpha L
$$

Proof Suppose $\left\{x_{n}\right\}_{n \in I} \in S(D, a)$. Then

$$
\lim _{n \rightarrow \infty} \alpha f\left(x_{n}\right)=\alpha \lim _{n \rightarrow \infty} f\left(x_{n}\right)=\alpha L
$$

Hence $\lim _{x \rightarrow a} \alpha f(x)=\alpha L$.

Proposition Suppose $D \subset \mathbb{R}, a$ is a limit point of $D, f: D \rightarrow \mathbb{R}$, and $g: D \rightarrow \mathbb{R}$. If $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} g(x)=M$, then

$$
\lim _{x \rightarrow a}(f(x)+g(x))=L+M
$$

Proof Suppose $\left\{x_{n}\right\}_{n \in I} \in S(D, a)$. Then

$$
\lim _{n \rightarrow \infty}\left(f\left(x_{n}\right)+g\left(x_{n}\right)\right)=\lim _{n \rightarrow \infty} f\left(x_{n}\right)+\lim _{n \rightarrow \infty} g\left(x_{n}\right)=L+M .
$$

Hence $\lim _{x \rightarrow a}(f(x)+g(x))=L+M$.
Proposition Suppose $D \subset \mathbb{R}, a$ is a limit point of $D, f: D \rightarrow \mathbb{R}$, and $g: D \rightarrow \mathbb{R}$. If $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} g(x)=M$, then

$$
\lim _{x \rightarrow a} f(x) g(x)=L M
$$

Exercise 12.1.1

Prove the previous proposition.
Proposition Suppose $D \subset \mathbb{R}, a$ is a limit point of $D, f: D \rightarrow \mathbb{R}, g: D \rightarrow \mathbb{R}$, and $g(x) \neq 0$ for all $x \in D$. If $\lim _{x \rightarrow a} f(x)=L, \lim _{x \rightarrow a} g(x)=M$, and $M \neq 0$, then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{L}{M}
$$

Exercise 12.1.2

Prove the previous proposition.
Proposition Suppose $D \subset \mathbb{R}, a$ is a limit point of $D, f: D \rightarrow \mathbb{R}$, and $f(x) \geq 0$ for all $x \in D$. If $\lim _{x \rightarrow a} f(x)=L$, then

$$
\lim _{x \rightarrow a} \sqrt{f(x)}=\sqrt{L}
$$

Exercise 12.1.3

Prove the previous proposition.
Given $D \subset \mathbb{R}, f: D \rightarrow \mathbb{R}$, and $A \subset D$, we let

$$
f(A)=\{y: y=f(x) \text { for some } x \in A\} .
$$

In particular, $f(D)$ denotes the range of f.
Proposition Suppose $D \subset \mathbb{R}, E \subset \mathbb{R}, a$ is a limit point of $D, g: D \rightarrow \mathbb{R}, f: E \rightarrow \mathbb{R}$, and $g(D) \subset E$. Moreover, suppose $\lim _{x \rightarrow a} g(x)=b$ and, for some $\epsilon>0, g(x) \neq b$ for all $x \in(a-\epsilon, a+\epsilon) \cap D$. If $\lim _{x \rightarrow b} f(x)=L$, then

$$
\lim _{x \rightarrow a} f \circ g(x)=L
$$

Proof Suppose $\left\{x_{n}\right\}_{n \in I} \in S(D, a)$. Then

$$
\lim _{n \rightarrow \infty} g\left(x_{n}\right)=b
$$

Let $N \in \mathbb{Z}^{+}$such that $\left|x_{n}-a\right|<\epsilon$ whenever $n>N$. Then

$$
\left\{g\left(x_{n}\right)\right\}_{n=N+1}^{\infty} \in S(E, b)
$$

so

$$
\lim _{n \rightarrow \infty} f\left(g\left(x_{n}\right)\right)=L
$$

Thus $\lim _{x \rightarrow a} f \circ g(x)=L$.
Example Let

$$
g(x)= \begin{cases}0, & \text { if } x \neq 0 \\ 1, & \text { if } x=0\end{cases}
$$

If $f(x)=g(x)$, then

$$
f \circ g(x)= \begin{cases}1, & \text { if } x \neq 0 \\ 0, & \text { if } x=0\end{cases}
$$

Hence $\lim _{x \rightarrow 0} f \circ g(x)=1$, although $\lim _{x \rightarrow 0} g(x)=0$ and $\lim _{x \rightarrow 0} f(x)=0$.

12.2 Important examples of limits

Example If $c \in \mathbb{R}$ and $f: \mathbb{R} \rightarrow \mathbb{R}$ is given by $f(x)=c$ for all $x \in \mathbb{R}$, then clearly $\lim _{x \rightarrow a} f(x)=c$ for any $a \in \mathbb{R}$.
Example Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $f(x)=x$ for all $x \in \mathbb{R}$. If, for any $a \in \mathbb{R}$, $\left\{x_{n}\right\}_{n \in I} \in S(\mathbb{R}, a)$, then

$$
\lim _{n \rightarrow \infty} f\left(x_{n}\right)=\lim _{n \rightarrow \infty} x_{n}=a
$$

Hence $\lim _{x \rightarrow a} x=a$.
Example Suppose $n \in \mathbb{Z}^{+}$and $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $f(x)=x^{n}$. Then

$$
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} x^{n}=\prod_{i=1}^{n} \lim _{x \rightarrow a} x=a^{n}
$$

Definition If $n \in \mathbb{Z}, n \geq 0$, and $b_{0}, b_{1}, \ldots, b_{n}$ are real numbers with $b_{n} \neq 0$, then the function $p: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
p(x)=b_{n} x^{n}+b_{n-1} x^{n-1}+\cdots+b_{1} x+b_{0}
$$

is called a polynomial of degree n.

Exercise 12.2.1

Show that if f is a polynomial and $a \in \mathbb{R}$, then $\lim _{x \rightarrow a} f(x)=f(a)$.

Definition Suppose p and q are polynomials and $D=\{x: x \in \mathbb{R}, q(x) \neq 0\}$. The function $r: D \rightarrow \mathbb{R}$ defined by

$$
r(x)=\frac{p(x)}{q(x)}
$$

is called a rational function.

Exercise 12.2.2

Show that if f is a rational function and a is in the domain of f, then $\lim _{x \rightarrow a} f(x)=f(a)$.

Exercise 12.2.3

Suppose $D \subset \mathbb{R}, a \in D$ is a limit point of D, and $\lim _{x \rightarrow a} f(x)=L$. If $E=D \backslash\{a\}$ and $g: E \rightarrow \mathbb{R}$ is defined by $g(x)=f(x)$ for all $x \in E$, show that $\lim _{x \rightarrow a} g(x)=L$.

Exercise 12.2.4
Evaluate

$$
\lim _{x \rightarrow 1} \frac{x^{5}-1}{x^{3}-1}
$$

Exercise 12.2.5

Suppose $D \subset \mathbb{R}, a$ is a limit point of $D, f: D \rightarrow \mathbb{R}, g: D \rightarrow \mathbb{R}, h: D \rightarrow \mathbb{R}$, and $f(x) \leq h(x) \leq g(x)$ for all $x \in D$. If $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} g(x)=L$, show that $\lim _{x \rightarrow a} h(x)=L$. (This is the squeeze theorem for limits of functions.)

Note that the results of this lecture which have been stated for limits will hold as well for the appropriate one-sided limits, that is, limits from the right or from the left.

Exercise 12.2.6

Suppose

$$
f(x)= \begin{cases}x+1, & \text { if } x<0 \\ 4, & \text { if } x=0 \\ x^{2}, & \text { if } x>0\end{cases}
$$

Evaluate $f(0), f(0-)$, and $f(0+)$. Does $\lim _{x \rightarrow 0} f(x)$ exist?

