
Lecture 1: Sets and Relations

1.1 The integers

Kronecker once said, \God made the integers; all the rest is the work of man." Taking
this as our starting point, we assume the existence of the set

Z= f: : : ;�3;�2;�1; 0; 1; 2; 3; : : :g;

the set of integers. Moreover, we assume the properties of the operations of addition and
multiplication of integers, along with other elementary properties such as the Fundamental
Theorem of Arithmetic (i.e., every integer may be factored into a product of prime numbers
and this factorization is essentially unique).

1.2 Sets

We will take a naive view of sets: given any property p, we may determine a set by
collecting together all objects which have property p. This may be done either by explicit
enumeration, such as, p is the property of being one of a, b, or c, which creates the set
fa; b; cg, or by stating the desired property, such as, p is the property of being a positive
integer, which creates the set

Z
+ = f1; 2; 3; 4; : : :g:

The notation x 2 A indicates that x is an element of the set A. Given sets A and B,
we say A is a subset of B, denoted A � B, if from the fact that x 2 A it necessarily follows
that x 2 B. We say sets A and B are equal if both A � B and B � A.

Given two sets A and B, the set

A [B = fx : x 2 A or x 2 Bg

is called the union of A and B and the set

A \B = fx : x 2 A and x 2 Bg

is called the intersection of A and B. The set

A nB = fx : x 2 A;x =2 Bg

is called the di�erence of A and B.
More generally, if I is a set and fA� : � 2 Ig is a collection of sets, one for each element

of I, then we have the union

[

�2I

A� = fx : x 2 A� for some �g

and the intersection \

�2I

A� = fx : x 2 A� for all �g:
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For example, if I = f2; 3; 4; : : :g and, for each i 2 I,

Ai = fn : n 2Z; n > i; n is not divisible by ig;

then
T
i2I

Ai is the set of prime numbers.
If A and B are both sets, the set

A�B = f(a; b) : a 2 A; b 2 Bg

is called the cartesian product of A and B. If A = B, we write

A2 = A �A:

For example,
Z
2 = f(m;n) : m 2Z; n 2Zg

is the set of all ordered pairs of integers.
Given two sets A and B, a subset R of A � B is called a relation. Given a relation

R, we will write a �R b, or simply a � b if R is clear from the context, to indicate that
(a; b) 2 R. For example, we could de�ne a relation R �Z2 by specifying that (m;n) 2 R,
that is, m �R n, if m divides n.

Consider a set A and a relation R � A2. For purposes of conciseness, we say simply
that R is a relation on A. If R is such that a �R a for every a 2 A, we say R is re
exive;
if R is such that b �R a whenever a �R b, we say R is symmetric; if a �R b and b �R c
together imply a �R c, we say R is transitive. A relation which is re
exive, symmetric,
and transitive is called an equivalence relation.

Exercise 1.2.1

Show that the relation R onZde�ned by m �R n if m divides n is re
exive and transitive,
but not symmetric.

Exercise 1.2.2

Show that the relation R on Zde�ned by m �R n if m � n is even is an equivalence
relation.

Given an equivalence relation R on a set A and an element x 2 A, we call

[x] = fy : y 2 A; y �R xg

the equivalence class of x.

Exercise 1.2.3

Given an equivalence relation R on a set A, show that

(a) [x] \ [y] 6= ; if and only if x �R y;
(b) [x] = [y] if and only if x �R y.

As a consequence of the previous exercise, the equivalence classes of a an equivalence
relation on a set A constitute a partition of A, that is, A may be written as the disjoint
union of equivalence classes.

Exercise 1.2.4

Find the equivalence classes for the equivalence relation in Exercise 1.2.2.


