Lecture 46:
Poles

Dan Sloughter
Furman University
Mathematics 39

May 25, 2004

46.1 Types of singular points

If zy is an isolated singular point of f, then, for some R > 0,
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for all z with 0 < |z — 29| < R. We call
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the principal part of f at zy. If for some positive integer m, b,, # 0 and
bm+1 = bm+2 == 0, that iS,
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with b,, # 0, then we say zy is a pole of order m. If m = 1, we say zg is a
simple pole. If an infinite number of the coefficients b,, are nonzero, we say 2z
is an essential singular point of f. If b, = 0 for all n, we say zy is a remouvable
singular point.

Example 46.1. Since
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f(z) = s1n§z) has a pole of order m = 2 at z = 0.
z

Example 46.2. Since
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f(2) = ——= has a removable singular point at z = 0.
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Example 46.3. Since
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f(z)= e> has an essential singular point at z = 0.

46.2 Residues at poles

Proposition 46.1. An isolated singular point of a function f is a pole of
order m if and only if there is a function ¢ such that ¢ is analytic at z,

#(z0) # 0, and
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Moreover, in this case
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Resf(z) = (m = 1()),
Example 46.4. If
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then we may write
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where
1
plz) = z+1
Hence z =1 is a pole of order m = 3 and
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as we have seen before. For the residue at z = —1, we write
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Hence z = —1 is a simple pole and we have
Res f(2) = p(~1) = — ¢
Res f(z2) = ¢ =3
Example 46.5. Let
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Hence if R > 1 and C' is the contour, with positive orientation, consisting of
the upper half of the circle |z| = R and the segment along the real axis from
—R to R, then
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Now if Cg is the upper half of the circle |z| = R, then
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But "
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and so
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It follows that
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