Lecture 44: Residues

Dan Sloughter Furman University Mathematics 39

May 21, 2004

44.1 Some terminology

Recall that we say a point z_0 is a singular point of a function f if f is not analytic at z_0 but is analytic at some point in every neighborhood of z_0 . We will say that z_0 is an *isolated* singular point if it is a singular point and there exists $\epsilon > 0$ such that f is analytic in the deleted neighborhood $0 < |z - z_0| < \epsilon$.

Example 44.1. Both z = i and z = -i are isolated singular points of

$$f(z) = \frac{1}{1+z^2}.$$

Example 44.2. z = 0 is a singular point, but not an isolated singular point, of f(z) = Log(z).

If z_0 is an isolated singular point of f, then there exists R > 0 such that f is analytic in $D = \{z \in \mathbb{C} : 0 < |z - z_0| < R\}$. It follows that f(z) has a Laurent series representation for all $z \in D$:

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n}.$$

In particular

$$b_1 = \frac{1}{2\pi i} \int_C f(z) dz,$$

where C is any positively oriented, simple closed contour which lies in D and has z_0 in its interior. In other words,

$$\int_C f(z)dz = 2\pi i b_1.$$

We call b_1 the *residue* of f at the isolated singular point z_0 , which we will denote

$$\underset{z=z_0}{\operatorname{Res}} f(z).$$

Example 44.3. Let C be the circle |z-1|=1 and consider the integral

$$\int_C \frac{1}{(z+1)(z-1)^3} dz.$$

Now

$$\frac{1}{z+1} = \frac{1}{2 - (-(z-1))}$$

$$= \frac{1}{2} \cdot \frac{1}{1 - (-(\frac{z-1}{2}))}$$

$$= \frac{1}{2} \sum_{n=0}^{\infty} \frac{(-1)^n (z-1)^n}{2^n}$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+1}} (z-1)^n$$

for all z with |z-1| < 2, and so

$$\frac{1}{(z+1)(z-1)^3} = \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+1}} (z-1)^{n-3}$$

$$= \frac{1}{2(z-1)^3} - \frac{1}{4(z-1)^2} + \frac{1}{8(z-1)} + -\frac{1}{16} + \frac{1}{32} (z-1) - \frac{1}{64} (z-1)^2 + \cdots$$

for all z with 0 < |z - 1| < 2. Hence

$$\operatorname{Res}_{z=1} \frac{1}{(z+1)(z-1)^3} = \frac{1}{8},$$

and so

$$\int_C \frac{1}{(z+1)(z-1)^3} dz = \frac{\pi}{4}i.$$

Another approach to evaluating this integral begins with finding the partial fraction decomposition of

$$\frac{1}{(z+1)(z-1)^3}.$$

That is, there are constants A, B, C, and D such that

$$\begin{split} \frac{1}{(z+1)(z-1)^3} &= \frac{A}{z+1} + \frac{B}{z-1} + \frac{C}{(z-1)^2} + \frac{D}{(z-1)^3} \\ &= \frac{A(z-1)^3 + B(z+1)(z-1)^2 + C(z+1)(z-1) + D(z+1)}{(z+1)(z-1)^3}, \end{split}$$

which implies that

$$1 = A(z-1)^3 + B(z+1)(z-1)^2 + C(z+1)(z-1) + D(z+1).$$

Evaluating at z=1, we find that $D=\frac{1}{2}$ and at z=-1 that $A=-\frac{1}{8}$. Evaluating at z=2 then gives

$$1 = -\frac{1}{8} + 3B + 3C + \frac{3}{2}$$

and at z = -2 gives

$$1 = \frac{27}{8} - 9B + 3C - \frac{1}{2}.$$

Thus

$$3B + 3C = -\frac{3}{8}$$
$$-9B + 3C = -\frac{15}{8}.$$

from which it follows that $B = \frac{1}{8}$ and $C = -\frac{1}{4}$. Hence

$$\frac{1}{(z+1)(z-1)^3} = -\frac{1}{8(z+1)} + \frac{1}{8(z-1)} - \frac{1}{4(z-1)^2} + \frac{1}{2(z-1)^3}.$$

Since the term $-\frac{1}{8(z+1)}$ is analytic at z=1, its contribution to the Laurent series at z=1 will have only positive powers of z-1; it follows that the

remaining three terms contribute all the negative powers of z-1 to the Laurent series. Thus we see once again that

$$\operatorname{Res}_{z=1} \frac{1}{(z+1)(z-1)^3} = \frac{1}{8}.$$

Alternatively, with the partial fraction decomposition we may observe that

$$\begin{split} \int_C \frac{1}{(z+1)(z-1)^3} dz &= -\int_C \frac{1}{8(z+1)} dz + \int_C \frac{1}{8(z-1)} dz - \int_C \frac{1}{4(z-1)^2} \\ &\quad + \frac{1}{2(z-1)^3} dz \\ &= \frac{1}{8} \int_C \frac{1}{z-1} dz \\ &= \frac{1}{8} \cdot 2\pi i \\ &= \frac{\pi}{4} i. \end{split}$$