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39.1 Uniform convergence

Definition 39.1. Let S ⊂ C and suppose fn : S → C is a sequence of
functions defined on S, n = 1, 2, 3, . . .. If f : S → C and

lim
n→∞

fn(z) = f(z)

for every z ∈ S, then we say fn converges pointwise to f on S. If for every
ε > 0 there exists a positive integer n0 such that

|fn(z)− f(z)| < ε

whenever n > n0 for every z ∈ S, then we say fn converges uniformly to f
on S.

Note that if fn converges to f pointwise, then, given a specific z ∈ S,
there exists a positive integer n0 such that

|fn(z)− f(z)| < ε

whenever n > n0, but n0 may depend on the value of z. For uniform conver-
gence, their exists a single n0 that works for all z ∈ S.

Example 39.1. Let S =
{
z ∈ C : |z| ≤ 1

2

}
, let fn(z) = zn, n = 1, 2, 3, . . .,

and let f(z) = 0 for all z ∈ S. Note that

lim
n→∞

fn(z) = lim
n→∞

zn = 0
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for every z ∈ S, and so fn converges pointwise to f on S.
Now, given ε > 0, choose a positive integer n0 so that(

1

2

)n0

< ε.

That is, choose n0 larger than

− ln(ε)

ln(2)
.

Then, for any z ∈ S,

|fn(z)− f(z)| = |zn − 0| = |z|n ≤
(

1

2

)n

< ε

whenever n > n0. Hence fn converges uniformly to f on S.

Example 39.2. Let S = {z ∈ C : |z| < 1}, let fn(z) = zn, n = 1, 2, 3, . . . ,
and let f(z) = 0 for all z ∈ S. As in the previous example, fn converges
pointwise to f for all z ∈ S. However, the convergence is not uniform. For
suppose there were a positive integer n0 such that, for all z ∈ S,

|z|n <
1

2

whenever n > n0. Let m = n0 + 1 and let

z =
m

√
1

2
.

Then z ∈ S, but

|z|m =
1

2
,

and so |z|n is not less than 1
2

for all n > n0.

39.2 Convergence of power series

Theorem 39.1. Suppose the power series

∞∑
n=0

an(z − z0)
n

converges at z = z1, where z1 6= z0. If R1 = |z1− z0|, then the power series is
absolutely convergent at each z in the open disk D = {z ∈ C : |z−z0| < R1}.

2



Proof. Since
∞∑

n=0

an(z1 − z0)
n

converges, we have
lim

n→∞
an(z1 − z0)

n = 0.

In particular, there exists a positive real number M such that

|an(z1 − z0)
n| ≤ M

for n = 0, 1, 2, 3, . . .. Now if z ∈ D, let

ρ =

∣∣∣∣ z − z0

z1 − z0

∣∣∣∣
Then 0 ≤ ρ < 1 and, for any n = 0, 1, 2, . . .,

|an(z − z0)
n| = |an(z1 − z0)

n|
∣∣∣∣ z − z0

z1 − z0

∣∣∣∣n ≤ Mρn.

Hence the series
∞∑

n=0

|an(z − z0)
n|

converges by comparison with the convergent geometric series

∞∑
n=0

Mρn.

Thus the series
∞∑

n=0

an(z − z0)
n

converges absolutely.

Definition 39.2. Given a power series

∞∑
n=0

an(z − z0)
n,

we call the largest value of R ≥ 0 such that the series converges for all z in
the disk |z − z0| < R the radius of convergence of the series, and we call the
circle |z − z0| = R the circle of convergence.
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Note that a power series may converge at some, all, or none of the points
on the circle of convergence. Moreover, although the series must converge
absolutely at all points inside the circle of convergence, convergence at points
on the circle of convergence need not be absolute.

Theorem 39.2. Suppose R is the radius of convergence of the power series

∞∑
n=0

an(z − z0)
n

and z1 is a point inside the circle of convergence. If R1 = |z1 − z0|, then the
power series converges uniformly on the closed disk D = {z ∈ C : |z − z0| ≤
R1}.

Proof. Given z ∈ D and a positive integer N , let

ρN(z) =
∞∑

n=N

an(z − z0)
n.

We need to show that, given ε > 0, we can find a positive integer n0, inde-
pendent of the value of z, such that |ρN(z)| < ε whenever N > n0. Now we
know that the power series converges absolutely at z1, and so we know we
may find a positive integer n0 such that

∞∑
n=N

|an(z1 − z0)
n| < ε

whenever N > n0. Moreover, for any positive integers N < m,∣∣∣∣∣
m∑

n=N

an(z − z0)
n

∣∣∣∣∣ ≤
m∑

n=N

|an||z−z0|n ≤
m∑

n=N

|an||z1−z0|n =
m∑

n=N

|an(z1 − z0)
n| .

Hence, for N > n0,

|ρN(z)| =

∣∣∣∣∣ lim
m→∞

m∑
n=N

an(z − z0)
n

∣∣∣∣∣
= lim

m→∞

∣∣∣∣∣
m∑

n=N

an(z − z0)
n

∣∣∣∣∣
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≤ lim
m→∞

m∑
n=N

|an(z1 − z0)
n|

=
∞∑

n=N

|an(z1 − z0)
n| < ε.
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