Lecture 39:
 Uniform Convergence

Dan Sloughter
Furman University
Mathematics 39

May 14, 2004

39.1 Uniform convergence

Definition 39.1. Let $S \subset \mathbb{C}$ and suppose $f_{n}: S \rightarrow \mathbb{C}$ is a sequence of functions defined on $S, n=1,2,3, \ldots$ If $f: S \rightarrow \mathbb{C}$ and

$$
\lim _{n \rightarrow \infty} f_{n}(z)=f(z)
$$

for every $z \in S$, then we say f_{n} converges pointwise to f on S. If for every $\epsilon>0$ there exists a positive integer n_{0} such that

$$
\left|f_{n}(z)-f(z)\right|<\epsilon
$$

whenever $n>n_{0}$ for every $z \in S$, then we say f_{n} converges uniformly to f on S.

Note that if f_{n} converges to f pointwise, then, given a specific $z \in S$, there exists a positive integer n_{0} such that

$$
\left|f_{n}(z)-f(z)\right|<\epsilon
$$

whenever $n>n_{0}$, but n_{0} may depend on the value of z. For uniform convergence, their exists a single n_{0} that works for all $z \in S$.

Example 39.1. Let $S=\left\{z \in \mathbb{C}:|z| \leq \frac{1}{2}\right\}$, let $f_{n}(z)=z^{n}, n=1,2,3, \ldots$, and let $f(z)=0$ for all $z \in S$. Note that

$$
\lim _{n \rightarrow \infty} f_{n}(z)=\lim _{n \rightarrow \infty} z^{n}=0
$$

for every $z \in S$, and so f_{n} converges pointwise to f on S.
Now, given $\epsilon>0$, choose a positive integer n_{0} so that

$$
\left(\frac{1}{2}\right)^{n_{0}}<\epsilon
$$

That is, choose n_{0} larger than

$$
-\frac{\ln (\epsilon)}{\ln (2)}
$$

Then, for any $z \in S$,

$$
\left|f_{n}(z)-f(z)\right|=\left|z^{n}-0\right|=|z|^{n} \leq\left(\frac{1}{2}\right)^{n}<\epsilon
$$

whenever $n>n_{0}$. Hence f_{n} converges uniformly to f on S.
Example 39.2. Let $S=\{z \in \mathbb{C}:|z|<1\}$, let $f_{n}(z)=z^{n}, n=1,2,3, \ldots$, and let $f(z)=0$ for all $z \in S$. As in the previous example, f_{n} converges pointwise to f for all $z \in S$. However, the convergence is not uniform. For suppose there were a positive integer n_{0} such that, for all $z \in S$,

$$
|z|^{n}<\frac{1}{2}
$$

whenever $n>n_{0}$. Let $m=n_{0}+1$ and let

$$
z=\sqrt[m]{\frac{1}{2}}
$$

Then $z \in S$, but

$$
|z|^{m}=\frac{1}{2}
$$

and so $|z|^{n}$ is not less than $\frac{1}{2}$ for all $n>n_{0}$.

39.2 Convergence of power series

Theorem 39.1. Suppose the power series

$$
\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

converges at $z=z_{1}$, where $z_{1} \neq z_{0}$. If $R_{1}=\left|z_{1}-z_{0}\right|$, then the power series is absolutely convergent at each z in the open disk $D=\left\{z \in \mathbb{C}:\left|z-z_{0}\right|<R_{1}\right\}$.

Proof. Since

$$
\sum_{n=0}^{\infty} a_{n}\left(z_{1}-z_{0}\right)^{n}
$$

converges, we have

$$
\lim _{n \rightarrow \infty} a_{n}\left(z_{1}-z_{0}\right)^{n}=0
$$

In particular, there exists a positive real number M such that

$$
\left|a_{n}\left(z_{1}-z_{0}\right)^{n}\right| \leq M
$$

for $n=0,1,2,3, \ldots$. Now if $z \in D$, let

$$
\rho=\left|\frac{z-z_{0}}{z_{1}-z_{0}}\right|
$$

Then $0 \leq \rho<1$ and, for any $n=0,1,2, \ldots$,

$$
\left|a_{n}\left(z-z_{0}\right)^{n}\right|=\left|a_{n}\left(z_{1}-z_{0}\right)^{n}\right|\left|\frac{z-z_{0}}{z_{1}-z_{0}}\right|^{n} \leq M \rho^{n} .
$$

Hence the series

$$
\sum_{n=0}^{\infty}\left|a_{n}\left(z-z_{0}\right)^{n}\right|
$$

converges by comparison with the convergent geometric series

$$
\sum_{n=0}^{\infty} M \rho^{n} .
$$

Thus the series

$$
\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

converges absolutely.
Definition 39.2. Given a power series

$$
\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

we call the largest value of $R \geq 0$ such that the series converges for all z in the disk $\left|z-z_{0}\right|<R$ the radius of convergence of the series, and we call the circle $\left|z-z_{0}\right|=R$ the circle of convergence.

Note that a power series may converge at some, all, or none of the points on the circle of convergence. Moreover, although the series must converge absolutely at all points inside the circle of convergence, convergence at points on the circle of convergence need not be absolute.

Theorem 39.2. Suppose R is the radius of convergence of the power series

$$
\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

and z_{1} is a point inside the circle of convergence. If $R_{1}=\left|z_{1}-z_{0}\right|$, then the power series converges uniformly on the closed disk $D=\left\{z \in \mathbb{C}:\left|z-z_{0}\right| \leq\right.$ $\left.R_{1}\right\}$.

Proof. Given $z \in D$ and a positive integer N, let

$$
\rho_{N}(z)=\sum_{n=N}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

We need to show that, given $\epsilon>0$, we can find a positive integer n_{0}, independent of the value of z, such that $\left|\rho_{N}(z)\right|<\epsilon$ whenever $N>n_{0}$. Now we know that the power series converges absolutely at z_{1}, and so we know we may find a positive integer n_{0} such that

$$
\sum_{n=N}^{\infty}\left|a_{n}\left(z_{1}-z_{0}\right)^{n}\right|<\epsilon
$$

whenever $N>n_{0}$. Moreover, for any positive integers $N<m$,

$$
\left|\sum_{n=N}^{m} a_{n}\left(z-z_{0}\right)^{n}\right| \leq \sum_{n=N}^{m}\left|a_{n}\right|\left|z-z_{0}\right|^{n} \leq \sum_{n=N}^{m}\left|a_{n}\right|\left|z_{1}-z_{0}\right|^{n}=\sum_{n=N}^{m}\left|a_{n}\left(z_{1}-z_{0}\right)^{n}\right| .
$$

Hence, for $N>n_{0}$,

$$
\begin{aligned}
\left|\rho_{N}(z)\right| & =\left|\lim _{m \rightarrow \infty} \sum_{n=N}^{m} a_{n}\left(z-z_{0}\right)^{n}\right| \\
& =\lim _{m \rightarrow \infty}\left|\sum_{n=N}^{m} a_{n}\left(z-z_{0}\right)^{n}\right|
\end{aligned}
$$

$$
\begin{aligned}
& \leq \lim _{m \rightarrow \infty} \sum_{n=N}^{m}\left|a_{n}\left(z_{1}-z_{0}\right)^{n}\right| \\
& =\sum_{n=N}^{\infty}\left|a_{n}\left(z_{1}-z_{0}\right)^{n}\right|<\epsilon
\end{aligned}
$$

