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35.1 Taylor series

Definition 35.1. If f is analytic at a point zg € C, we call the power series
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the Taylor series of f about z5. When zy = 0, we call
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the Maclaurin series of f.
The following fundamental theorem is known as Taylor’s theorem.

Theorem 35.1. If Ry > 0, 29 € C, and f is analytic in the disk
D={2€C:|z— 2| < Ro},

then
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for all z € D.



Proof. We first assume zp = 0. Let z € D, let r = |z|, let r < ry < Ry, and
let Cy be the positively oriented circle of radius ry centered at the origin. By
the Cauchy integral formula, we have
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where
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It remains to show that limy_ .. pn(2) = 0. Let M be the maximum value
of |f(s)| on Cy and note that
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Since = < 1, we have limy_. pn(z) = 0.
Fmally, 1f 20 # 0, let g(2) = f(2 + 20). Then g is analytic when
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that is, when |z| < Ry. Hence

flz4 20) = Z

n=0 ! n=0

n

when |z| < Ry. Thus if |z — 2| < Ry,
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