Lecture 35: Taylor Series

Dan Sloughter Furman University Mathematics 39

May 5, 2004

35.1 Taylor series

Definition 35.1. If f is analytic at a point $z_0 \in \mathbb{C}$, we call the power series

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$$

the Taylor series of f about z_0 . When $z_0 = 0$, we call

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} z^n$$

the Maclaurin series of f.

The following fundamental theorem is known as Taylor's theorem.

Theorem 35.1. If $R_0 > 0$, $z_0 \in \mathbb{C}$, and f is analytic in the disk

$$D = \{ z \in \mathbb{C} : |z - z_0| < R_0 \},\$$

then

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$$

for all $z \in D$.

Proof. We first assume $z_0 = 0$. Let $z \in D$, let r = |z|, let $r < r_0 < R_0$, and let C_0 be the positively oriented circle of radius r_0 centered at the origin. By the Cauchy integral formula, we have

$$f(z) = \frac{1}{2\pi i} \int_{C_0} \frac{f(s)}{s - z} ds.$$

Now

$$\frac{1}{s-z} = \frac{1}{s} \cdot \frac{1}{1-\frac{z}{s}}$$

$$= \frac{1}{s} \left(\sum_{n=0}^{N-1} \left(\frac{z}{s} \right)^n + \frac{\left(\frac{z}{s} \right)^N}{1-\frac{z}{s}} \right)$$

$$= \sum_{n=0}^{N-1} \frac{z^n}{s^{n+1}} + \frac{z^N}{(s-z)s^N}.$$

Hence

$$f(z) = \frac{1}{2\pi i} \sum_{n=0}^{N-1} z^n \int_{C_0} \frac{f(s)}{s^{n+1}} ds + \frac{z^N}{2\pi i} \int_{C_0} \frac{f(s)}{(s-z)s^N} ds$$
$$= \sum_{n=0}^{N-1} \frac{f^{(n)}(0)}{n!} z^n + \rho_N(z),$$

where

$$\rho_N(z) = \frac{z^N}{2\pi i} \int_{C_0} \frac{f(s)}{(s-z)s^N} ds.$$

It remains to show that $\lim_{N\to\infty} \rho_N(z) = 0$. Let M be the maximum value of |f(s)| on C_0 and note that

$$|s - z| \ge ||s| - |z|| = r_0 - r.$$

Then

$$\left| \frac{f(s)}{(s-z)s^N} \right| \le \frac{M}{(r_0 - r)r_0^N},$$

and so

$$|\rho_N(z)| \le \frac{r^N}{2\pi} \cdot \frac{M}{(r_0 - r)r_0^N} \cdot 2\pi r_0 = \frac{Mr_0}{r_0 - r} \left(\frac{r}{r_0}\right)^N.$$

Since $\frac{r}{r_0} < 1$, we have $\lim_{N \to \infty} \rho_N(z) = 0$. Finally, if $z_0 \neq 0$, let $g(z) = f(z + z_0)$. Then g is analytic when

$$|(z+z_0)-z_0| < R_0,$$

that is, when $|z| < R_0$. Hence

$$f(z+z_0) = g(z) = \sum_{n=0}^{\infty} \frac{g^{(n)}(0)}{n!} z^n = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} z^n$$

when $|z| < R_0$. Thus if $|z - z_0| < R_0$,

$$f(z) = f((z - z_0) + z_0) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n.$$