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32.1 Liouville’s Theorem

The following remarkable result is known as Liouville’s theorem.

Theorem 32.1. If f : C → C is entire and bounded, then f(z) is constant
throughout the plane.

The proof of Liouville’s theorem follows easily from the following lemma.

Lemma 32.1. Let CR be the circle |z − z0| = R, R > 0, and suppose f is
analytic on the region consisting of CR and the points in its interior. If MR

is the maximum value of |f(z)| on CR, then, for n = 1, 2, 3, . . .,∣∣f (n)(z0)
∣∣ ≤ n!MR

Rn
.

Proof. Since

f (n)(z0) =
n!

2πi

∫
CR

f(z)

(z − z0)n+1
dz

and ∣∣∣∣ f(z)

(z − z0)n+1

∣∣∣∣ =
|f(z)|

|z − z0|n+1
≤ MR

Rn+1
,

we have ∣∣f (n)(z0)
∣∣ ≤ n!

2π
· MR

Rn+1
· 2πR =

n!MR

Rn
.
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We may now return to the proof of Liouville’s theorem.

Proof. Suppose f is entire and f(z) ≤ M for all z ∈ C. From the lemma, we
have, for any z0 ∈ C and any R > 0,

|f ′(z0)| ≤
MR

R
≤ M

R
.

Letting R →∞, we have |f ′(z0)| = 0, and hence f ′(z0) = 0 for every z0 ∈ C.
Thus f(z) = c for some constant c and all z ∈ C.

32.2 Polynomials

Now consider a polynomial

P (z) = a0 + a1z + a2z
2 + · · ·+ anz

n,

with an 6= 0. Suppose there does not exists a z0 ∈ C for which P (z0) = 0.
Let

f(z) =
1

P (z)
.

Then f is entire. Moreover, if n ≥ 1,

lim
z→∞

f(z) = 0

since

lim
z→0

f

(
1

z

)
= lim

z→0

1

P
(

1
z

)
= lim

z→0

1

a0 + a1

z
+ a2

z2 + · · ·+ an

zn

= lim
z→0

zn

a0zn + a1zn−1 + a2zn−2 + · · ·+ an

=
0

an

= 0.

Hence there exists R > 0 such that |f(z)| < 1 whenever |z| > R. Since
f is continuous on the closed disk |z| ≤ R, there exists M > 0 such that
|f(z)| ≤ M whenever |z| ≤ R. It follows that f is bounded on C. But then,
by Liouville’s theorem, f is a constant function, which is true only if n = 0.
Hence we have proven the following fundamental theorem of algebra.
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Theorem 32.2. If P is a polynomial of degree n ≥ 1, then there exists at
least one point z0 ∈ C such that P (z0) = 0.

Given a polynomial P of degree n ≥ 1 and a point z1 for which P (z1) = 0,
one may show that there exists a polynomial Q of degree n− 1 such that

P (z) = (z − z1)Q(z).

Proceeding in this way, it now follows that there exist constants c and zk,
k = 1, 2, 3, . . . , n, such that

P (z) = c(z − z1)(z − z2) · · · (z − zn).

This is the Fundamental Theorem of Algebra.

Corollary 32.1. Every algebraist needs an analyst.
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