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26.1 An upper bound

Proposition 26.1. If |f(z)| < M for all z € C, where C is a contour z(t),
a <t <b,and L is the length of C', then
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Note that such an M always exists since we assume that f(z(t)) is a
piecewise continuous function on a closed interval [a,b] (this is the extreme
value theorem from calculus).

Example 26.1. Consider
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where C'is the arc of the circle |z| = 3 from 3 to —3. Now for z on C,
|22+ 1 < |2+l =]z +1=9+1=10

and
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Since C' has length 3, it follows that
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Example 26.2. Now consider
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where C' is the arc of the circle |z| = R from R to —R, R > 1. We have, for
zon C,
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Now
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