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24.1 Curves

Definition 24.1. Suppose z : [a,b] — R and y : [a,b] — R are both contin-
uous and let z(t) = x(t) + iy(t). We call the set

C={weC:w=2z(t),a <t <b}

an arc. We call C' a simple arc if z(t1) # z(t2) whenever ¢; # t5, and we call
C' a simple closed curve, or a Jordan curve, if z(b) = z(a) and z(t1) # z(t2)
whenever a < t; < b, a < ty <b, and t; # ts.

To be precise, an arc is the set of points C' along with the parametrization

z(t).

Example 24.1. The arc described by 2(t) = €, 0 < t < 27, is the unit
circle centered at the origin, and is a simple closed curve. The arc described
by w(t) = e ™, 0 <t < 27, is the same set of points, but is not the same as
the previous arc because the parametrization is different.

Example 24.2. More generally, for any zg € C and R > 0, the arc described
by z(t) = 29 + Re®, 0 < t < 2m, is a circle of radius R centered at zg.

Example 24.3. Note that the arc described by z(t) = ¢, 0 < t < 2m, is,
as a set of points, the unit circle centered at the origin, but is not a simple
closed curve since the circle is traversed twice as t goes from 0 to 2.



24.2 Arclength

Suppose z(t) describes an arc C for a < t < b. If we divide [a,b] into n

subintervals, each of length
b—a

At

n
with endpoints a =t) < t; <ty < --- <t, =b, then

V(@(t:) — x(tio1))? + (y(ts) — y(ti-1))?

approximates the length of the arc from z(¢;_1) to z(¢;). If L is the length of
C, then
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Letting n — oo (equivalently, At — 0), we expect
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Example 24.4. If L is the length of the curve described by z(t) = e,
0 <t < 2m, then |2/(t)| = |ie™| = 1, and so

27
L:/ 1dt = 2.
0

Now suppose z(t), a < t < b, describes an arc C' and ¢ : [¢,d] — [a,b]
maps [c,d] onto [a,b]. Moreover, suppose ¢ is continuous on [c, ¢], differen-
tiable on (¢, d), and ¢'(t) > 0 for all ¢ € (¢, d). Then

Z(t) = z(p(t), c < t < d,

also describes (that is, parametrizes) the arc C. If L is the length of C, then,
as described above,
b
L- / 12/ (6)|dt.
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If we make the substitution ¢t = ¢(s), then dt = ¢'(s)ds, and so

d d
L= [ el s = [ 1Z/)las
where we have used that fact that

|Z'(s)] = |2'(e()¢ (s)] = |2 (i2(s)) ¢ (5)

because of the chain rule and the fact that ¢'(s) > 0 for all s. Hence, as we
should expect, the length of an arc does not depend on the parametrization.

Example 24.5. Note that Z(t) = ¢!, 0 < t < 7, describes the same set
of points, namely, the unit circle centered at the origin, as in the previous
example. This time Z'(t) = 2ie®®*, and so |Z'(t)| = 2 and we find

L—/ 2dt = 2.
0

Note, however, that if we had 0 <t < 27, then we would find

27
L:/ 2dt = 4w
0

because this parametrization of the unit circle traverses the circle twice.

24.3 Smooth curves and contours

Suppose z(t), a <t < b, describes an arc C and 2'(t) # 0 for all ¢ € (a,b). In
multi-variable calculus, one interprets z/(¢) geometrically as a vector tangent
to C at z(t), and then defines

to be the unit tangent vector. If 2/(¢) is continuous, then T varies continu-
ously, and we think of the curve as being smooth.

Definition 24.2. We say an arc z(t) is smooth if 2/(t) is continuous on [a, b]
and 2/(t) # 0 for all t € (a,b).



We call a finite number of smooth arcs joined end to end a contour. If
2(t), a <t < b, parametrizes a contour C, then z(t) is continuous and 2'(t)
is piecewise continuous. Moreover, if z(a) = z(b) but z(t;) # z(t3) for all
t1,t2 € (a,b), then we call C' a simple closed contour.

The following result, the Jordan curve theorem, appears intuitively obvi-
ous, but is surprisingly hard to prove.

Theorem 24.1. If z(t) parametrizes a simple closed contour C, then
C=CUIUFE

where (1) C, I, and E are disjoint; (2) [ is bounded; (3) E is unbounded;
and (4) C' is the boundary of both [ and E.

We call I the interior of C and E the exterior of C.



