Lecture 19:
 Complex Exponents

Dan Sloughter
Furman University
Mathematics 39

April 6, 2004

19.1 Complex exponents

Definition 19.1. Given $c \in \mathbb{C}$ and $z \in \mathbb{C}, z \neq 0$, we define

$$
z^{c}=e^{c \log (z)} .
$$

Example 19.1. We have

$$
2^{i}=e^{i \log (2)}=e^{i(\ln (2)+i 2 n \pi)}=e^{i \ln (2)-2 n \pi}=e^{-2 n \pi}(\cos (\ln (2))+i \sin (\ln (2))),
$$

for $n=0, \pm 1, \pm 2, \ldots$.
Example 19.2. We have

$$
i^{i}=e^{i \log (i)}=e^{i\left(i\left(\frac{\pi}{2}+2 n \pi\right)\right)}=e^{-\left(2 n+\frac{1}{2}\right) \pi}, n=0, \pm 1, \pm 2, \ldots
$$

Let $\alpha \in \mathbb{R}$. If, for $z=r e^{i \theta}, r>0, \alpha<\theta<\alpha+2 \pi$, we choose the branch

$$
\log (z)=\ln (r)+i \theta
$$

of $\log (z)$, we obtain a branch

$$
z^{c}=e^{c \log (z)}
$$

of z^{c}. We then have

$$
\frac{d}{d z} z^{c}=\frac{d}{d z} e^{c \log (z)}=e^{c \log (z)} \frac{c}{z}=\frac{c e^{c \log (z)}}{e^{\log (z)}}=c e^{(c-1) \log (z)}=c z^{c-1}
$$

for z in

$$
U=\left\{z=r e^{i \theta} \in \mathbb{C}: r>0, \alpha<\theta<\theta+2 \pi\right\} .
$$

In particular, z^{c} is an analytic function of z for $z \in U$.
The principal value of z^{c} is

$$
\text { P.V. } z^{c}=e^{c \log (z)} .
$$

This is the principal branch of z^{c}, and is analytic in

$$
\left\{z=r e^{i \theta} \in \mathbb{C}: r>0,-\pi<\theta<\pi\right\} .
$$

Example 19.3. P.V. $i^{i}=e^{-\frac{\pi}{2}}$.
Example 19.4. The principle branch of $z^{\frac{3}{5}}$ is

$$
\text { P.V. } z^{\frac{3}{5}}=e^{\frac{3}{5} \log (z)}=e^{\frac{3}{5}(\ln (r)+i \Theta)}=\sqrt[5]{r^{3}}\left(\cos \left(\frac{3 \Theta}{5}\right)+i \sin \left(\frac{3 \Theta}{5}\right)\right),
$$

where $z=r^{i \Theta}, r>0$ and $\Theta=\operatorname{Arg}(z)$.
For a fixed $c \in \mathbb{C}, c \neq 0$, fix a value of $\log (c)$ and consider the function c^{z}. Then

$$
\frac{d}{d z} c^{z}=\frac{d}{d z} e^{z \log (c)}=e^{z \log (c)} \log (c)=c^{z} \log (c)
$$

Hence c^{z} is an entire function of z. Moreover, note that if $c=e$ and we use $\log (e)$, this reduces to our previous result about e^{z}.

