Lecture 19: Complex Exponents

Dan Sloughter Furman University Mathematics 39

April 6, 2004

19.1 Complex exponents

Definition 19.1. Given $c \in \mathbb{C}$ and $z \in \mathbb{C}$, $z \neq 0$, we define

 $z^c = e^{c \log(z)}.$

Example 19.1. We have

$$2^{i} = e^{i\log(2)} = e^{i(\ln(2) + i2n\pi)} = e^{i\ln(2) - 2n\pi} = e^{-2n\pi}(\cos(\ln(2)) + i\sin(\ln(2))),$$

for $n = 0, \pm 1, \pm 2, \dots$

Example 19.2. We have

$$i^{i} = e^{i\log(i)} = e^{i\left(i\left(\frac{\pi}{2}+2n\pi\right)\right)} = e^{-\left(2n+\frac{1}{2}\right)\pi}, n = 0, \pm 1, \pm 2, \dots$$

Let $\alpha \in \mathbb{R}$. If, for $z = re^{i\theta}$, r > 0, $\alpha < \theta < \alpha + 2\pi$, we choose the branch

$$\log(z) = \ln(r) + i\theta$$

of $\log(z)$, we obtain a branch

$$z^c = e^{c \log(z)}$$

of z^c . We then have

$$\frac{d}{dz}z^{c} = \frac{d}{dz}e^{c\log(z)} = e^{c\log(z)}\frac{c}{z} = \frac{ce^{c\log(z)}}{e^{\log(z)}} = ce^{(c-1)\log(z)} = cz^{c-1}$$

for z in

$$U = \{ z = re^{i\theta} \in \mathbb{C} : r > 0, \alpha < \theta < \theta + 2\pi \}.$$

In particular, z^c is an analytic function of z for $z \in U$.

The principal value of z^c is

$$P.V. z^c = e^{c \operatorname{Log}(z)}.$$

This is the principal branch of z^c , and is analytic in

$$\{z = re^{i\theta} \in \mathbb{C} : r > 0, -\pi < \theta < \pi\}.$$

Example 19.3. P.V. $i^i = e^{-\frac{\pi}{2}}$.

Example 19.4. The principle branch of $z^{\frac{3}{5}}$ is

$$P.V. z^{\frac{3}{5}} = e^{\frac{3}{5}\log(z)} = e^{\frac{3}{5}(\ln(r) + i\Theta)} = \sqrt[5]{r^3} \left(\cos\left(\frac{3\Theta}{5}\right) + i\sin\left(\frac{3\Theta}{5}\right) \right),$$

where $z = r^{i\Theta}$, r > 0 and $\Theta = \operatorname{Arg}(z)$.

For a fixed $c \in \mathbb{C}$, $c \neq 0$, fix a value of $\log(c)$ and consider the function c^z . Then

$$\frac{d}{dz}c^{z} = \frac{d}{dz}e^{z\log(c)} = e^{z\log(c)}\log(c) = c^{z}\log(c).$$

Hence c^z is an entire function of z. Moreover, note that if c = e and we use Log(e), this reduces to our previous result about e^z .