Simply connected domains

- We say a domain D is *simply connected* if, whenever $C \subset D$ is a simple closed contour, every point in the interior of C lies in D.
- We say a domain which is not simply connected is *multiply connected*.

Examples

- The domain
 \[U = \{ z \in \mathbb{C} : |z| < 1 \} \]
 is simply connected.
- The domain
 \[A = \{ z \in \mathbb{C} : 1 < |z| < 2 \} \]
 is not simply connected.
Theorem

▶ If D is a simply connected domain and f is analytic in D, then

\[\int_C f(z)dz = 0 \]

for every closed contour C in D.

▶ Proof

▶ If C is a simple closed contour, then the conclusion follows from the Cauchy-Goursat theorem.

▶ If C is not simple, but intersects itself only a finite number of times, then the conclusion follows by writing C as a sum of simple closed contours.

▶ We will omit the more difficult situation in which C intersects itself an infinite number of times.

Corollary

▶ If D is a simply connected domain and f is analytic in D, then f has an antiderivative at all points of D.

▶ Note: In particular, entire functions have antiderivatives on all of \mathbb{C}.
Theorem

- Suppose C is a positively oriented, simple closed contour and that C_1, C_2, \ldots C_n are negatively oriented, simple closed contours, all of which are in the interior of C, are disjoint, and have disjoint interiors.
- Let R be the region consisting of C, C_1, C_2, \ldots, C_n, and all points which are in the interior of C and the exterior of each C_k.
- If f is analytic in R, then
\[
\int_C f(z)dz + \sum_{k=1}^{n} \int_{C_k} f(z)dz = 0.
\]

Proof

- Let L_1 be a polygonal path connecting C to C_1, L_k a polygonal path connecting C_{k-1} to C_k, $k = 2, 3, \ldots, n$, and L_{n+1} a polygonal path connecting C_n to C.
- Let B_1 be the part of C from where L_{n+1} joins C to where L_1 joins C, B_2 the remaining part of C, α_k the part of C_k between where L_k and L_{k+1} join C_k, and β_k the remaining part of C_k.
- Let
\[
\Gamma_1 = B_1 + L_1 + \alpha_1 + L_2 + \alpha_2 + \cdots + \alpha_n + L_{n+1}
\]
and
\[
\Gamma_2 = B_2 - L_{n+1} + \beta_n - L_n + \beta_{n-1} - \cdots + \beta_1 - L_1.
\]
Proof (cont’d)

Then, by the Cauchy-Goursat theorem,

\[\int_{\Gamma_1} f(z)\,dz = 0 = \int_{\Gamma_2} f(z)\,dz. \]

Hence

\[0 = \int_{\Gamma_1} f(z)\,dz + \int_{\Gamma_2} f(z)\,dz = \int_C f(z)\,dz + \sum_{k=1}^{n} \int_{C_k} f(z)\,dz. \]

Corollary

Suppose \(C_1 \) and \(C_2 \) are positively oriented, simply closed contours with \(C_2 \) lying in the interior of \(C_1 \).

Let \(R \) be the region consisting of \(C_1, C_2 \), and the part of the interior of \(C_1 \) which is in the exterior of \(C_2 \).

If \(f \) is analytic in \(R \), then

\[\int_{C_1} f(z)\,dz = \int_{C_2} f(z)\,dz. \]

Proof: From the previous theorem, we have

\[\int_{C_1} f(z)\,dz - \int_{C_2} f(z)\,dz = 0. \]
Example

- By a homework exercise, if \(C_0 \) is any positively oriented circle with center at the origin, then

\[
\int_{C_0} \frac{1}{z} \, dz = 2\pi i.
\]

- It now follows that if \(C \) is any positively oriented, simple closed contour with the origin in its interior, then

\[
\int_{C} \frac{1}{z} \, dz = 2\pi i.
\]