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19.1 The unconscious statistician, revisited

The following is a generalization of the law of the unconscious statistician.

Theorem 19.1. If X and Y are discrete random variables with joint prob-
ability function p, h : R → R, and Y = h(X, Y ), then

E[Y ] =
∑

x

∑
y

h(x, y)p(x, y).

Similarly, if X and Y are jointly continuous random variables with joint
density function f , h : R → R, and Y = h(X, Y ), then

E[Y ] =

∫ ∞

−∞

∫ ∞

−∞
h(x, y)f(x, y)dxdy.

Example 19.1. Suppose X and Y have joint probability density function

f(x, y) =

{
2, if 0 < x < y < 1,

0, otherwise.

Then, for example,

E[X] =

∫ 1

0

∫ y

0

2xdxdy =

∫ 1

0

y2dy =
1

3
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and

E[Y ] =

∫ 1

0

∫ y

0

2ydxdy =

∫ 1

0

2y2dy =
2

3
.

Note that, using the marginals fX and fY which we found previously, we
could have computed

E[X] =

∫ ∞

−∞
xfX(x)dx =

∫ 1

0

2x(1− x)dx = 1− 2

3
=

1

3

and

E[Y ] =

∫ ∞

−∞
yfY (x)dx =

∫ 1

0

2y2dy =
2

3
.

Example 19.2. Suppose X and Y are independent, each having a uniform
distribution on [0, 1]. Then, for example,

E[XY ] =

∫ 1

0

∫ 1

0

xydxdy =

∫ 1

0

1

2
ydy =

1

4
.

Note that E[X] = 1
2

and E[Y ] = 1
2
, so we have, in this case, E[XY ] =

E[X]E[Y ]. This is in fact true in general for independent random variables.

19.2 Expectations of sums

Theorem 19.2. For any random variable X and real numbers a and b,

E[aX + b] = aE[X] + b.

Proof. We will assume X is continuous with density f (the proof for discrete
X is similar). In that case,

E[aX+b] =

∫ ∞

−∞
(ax+b)f(x)dx = a

∫ ∞

−∞
xf(x)dx+b

∫ ∞

−∞
f(x)dx = aE[X]+b.

Example 19.3. Suppose X has a standard normal distribution. Then

E[X] =
1√
2π

∫ ∞

−∞
xe−

x2

2 dx
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=
1√
2π

∫ 0

−∞
xe−

x2

2 dx +
1√
2π

∫ ∞

0

xe−
x2

2 dx

=
1√
2π

(
lim

b→−∞

(
−e−

x2

2

∣∣∣∣0
b

)
+ lim

b→∞
e−

x2

2

∣∣∣∣b
0

)

=
1√
2π

(
lim

b→−∞

(
−1 + e−

b2

2

)
+ lim

b→∞

(
−e−

b2

2 + 1
))

= 0.

For σ > 0 and −∞ < µ <∞, let Y = σX + µ. Then Y is N(µ, σ2), and

E[Y ] = σE[X] + µ = µ.

Theorem 19.3. If X is a random variable with moment generating function
ϕX , a and b are real numbers, Y = aX + b, and ϕY is the moment generating
function of Y , then

ϕY (t) = etbϕX(at).

Proof. We have

ϕY (t) = E[et(aX+b)] = E[eatXetb] = etbϕX(at).

Example 19.4. Suppose X is standard normal. Then

ϕX(t) =
1√
2π

∫ ∞

−∞
etxe−

x2

2 dx

=
1√
2π

∫ ∞

−∞
e−

1
2
(x2−2xt)dx

=
1√
2π

∫ ∞

−∞
e−

1
2
((x−t)2−t2)dx

= e
t2

2
1√
2π

∫ ∞

−∞
e−

1
2
(x−t)2dx

= e
t2

2 .

Now let Y = σX + µ, where σ > 0 and −∞ < µ < ∞. Then Y is N(µ, σ2),
and

ϕY (t) = eµtϕX(σt) = eµte
σ2t2

2 = eµt+σ2t2

2 .
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Note that

ϕ′Y (t) = (µ + σ2t)eµt+σ2t2

2

and

ϕ′′Y (t) =
(
(µ + σ2t)2 + σ2

)
eµt+σ2t2

2 ,

so
E[Y ] = ϕ′Y (0) = µ

and
E[Y 2] = ϕ′′Y (0) = µ2 + σ2.

Theorem 19.4. For random variables X and Y and any real numbers a and
b,

E[aX + bY ] = aE[X] + bE[Y ].

Proof. Suppose X and Y are jointly continuous with joint density f . Then

E[aX + bY ] =

∫ ∞

−∞

∫ ∞

−∞
(ax + by)f(x, y)dxdy

= a

∫ ∞

−∞

∫ ∞

−∞
xf(x, y)dxdy + b

∫ ∞

−∞

∫ ∞

−∞
yf(x, y)dxdy

= aE[X] + bE[Y ].

More generally, for random variables X1, X2, . . . , Xn and real numbers
a1, a2, . . . , an, we have

E[a1X1 + a2X2 + · · ·+ anXn] = a1E[X1] + a2E[X2] + · · ·+ anE[xn].

Example 19.5. In this example we illustrate another method for finding
the expected value of a binomial random variable. First, suppose X has a
Bernoulli distribution with probability of success p. Then

E[X] = 0× (1− p) + 1× p = p.

Now suppose X1, X2, . . . , Xn are independent Bernoulli random variables,
each with probabilty of success p, and let

Sn = X1 + X2 + · · ·+ Xn.

Then Sn is binomial with parameters n and p. Moreover,

E[Sn] = E[X1] + E[X2] + · · ·+ E[Xn] = np.
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Example 19.6. Suppose n balls are drawn, without replacement, from an
urn containing M red balls and N black balls. For k = 1, 2, . . . , n, let

Xk =

{
1, if the kth ball is red,

0, otherwise.

Then, for any k = 1, 2, . . . , n,

E[Xk] = 0× P (Xk = 0) + 1× P (Xk = 1)

=
M(N + M − 1)(N + M − 2) · · · (N + M − n + 1)

(N + M)(N + M − 1)(N + M − n + 1)

=
M

N + M
.

Hence, if Sn = X1 + X2 + · · ·+ Xn, then

E[Sn] =
nM

N + M
.

Note that, as in the previous example, X1, X2, . . . , Xn are Bernoulli variables;
however, in this case Sn is hypergeometric, not binomial.

19.3 Expectations of products

Theorem 19.5. If X and Y are independnent random variables, then

E[XY ] = E[X]E[Y ].

Proof. Suppose X and Y are jointly continuous with marginal denisties fX

and fY , respectively. Then

E[XY ] =

∫ ∞

−∞

∫ ∞

−∞
xyfx(x)fY (y)dxdy

=

∫ ∞

−∞
yfY (y)

∫ ∞

−∞
xfX(x)dxdy

= E[X]

∫ ∞

−∞
yfY (y)dy

= E[X]E[Y ].
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More generally, if X1, X2, . . . , Xn are independent random variables,
then

E[X1X2 · · ·Xn] = E[X1]E[X2] · · ·E[Xn].

Example 19.7. If X and Y are independent N(µ, σ2) random variables,
then

E[XY ] = E[X]E[Y ] = µ2.

Theorem 19.6. Suppose X1, X2, . . . , Xn are independent random variables,
with moment generating functions ϕX1 , ϕX2 , . . . , ϕXn , and Y = X1 + X2 +
· · ·+ Xn. Then the moment generating function of Y is

ϕY (t) = ϕX1(t)ϕX2(t) · · ·ϕXn(t).

Proof. We have

ϕY (t) = E[et(X1+X2+···+Xn)]

= E[etX1etX2 · · · etXn ]

= E[etX1 ]E[etX2 ] · · ·E[etXn ]

= ϕX1(t)ϕX2(t) · · ·ϕXn(t).

Note that, in particular, if X1, X2, . . . , Xn are idependent and identically
distributed (i.i.d) random variables, each with moment generating function
ϕ, then the moment generating function of Sn = X1 + X2 + · · ·+ Xn is

ϕSn(t) = (ϕ(t))n .

Example 19.8. Suppose X is Bernoulli with probability of success p. The
moment generating function of X is

ϕX(t) = E[etX ] = (1− p) + pet.

If X1, X2, . . . , Xn are i.i.d. Bernoulli random variables, each with probability
of success p, and Sn = X1+Xn+· · ·+Xn, then Sn is binomial and has moment
generating function

ϕSn(t) = (1− p + pet)n.
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19.4 Uniqueness of moment generating functions

We will find the following theorem very useful, although its proof is beyond
the scope of this course.

Theorem 19.7. Suppose X and Y are random variables with moment gen-
erating functions ϕX and ϕY , respectively. If ϕX(t) = ϕY (t) for all t in some
interval (−t0, t0), where t0 > 0, then X and Y have the same distribution.

Example 19.9. Suppose X and Y are independent binomial random vari-
ables, with parameters n and p and m and p, respectively. If ϕX is the
moment generating function of X, ϕY is the moment generating function of
Y , and ϕX+Y is the moment generating function of X + Y , then

ϕX(t) = (1− p + pet)n,

ϕY (t) = (1− p + pet)m,

and
ϕX+Y (t) = (1− p + pet)n+m.

It follows that X + Y is binomial with parameters n + m and p.

Example 19.10. Suppose X and Y are independent Poisson random vari-
ables, with parameters λ and µ, respectively. If ϕX is the moment generating
function of X, ϕY is the moment generating function of Y , and ϕX+Y is the
moment generating function of X + Y , then

ϕX(t) = eλ(et−1),

ϕY (t) = eµ(et−1),

and
ϕX+Y (t) = e(λ+µ)(et−1).

It follows that X + Y is Poisson with parameter λ + µ.

Example 19.11. Suppose X and Y are independent N(µX , σ2
X) and N(µY , σ2

Y ),
respectively, random variables. If ϕX is the moment generating function of
X, ϕY is the moment generating function of Y , and ϕX+Y is the moment
generating function of X + Y , then

ϕX(t) = eµX+
σ2

Xt2

2 ,
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ϕY (t) = eµY +
σ2

Y t2

2 ,

and

ϕX+Y (t) = eµ+µY +
(σ2

X+σ2
Y )t2

2 .

It follows that X + Y is N(µX + µY , σ2
X + σ2

Y ).

Example 19.12. Suppose X and Y are independent gamma random vari-
ables, with parameters m and λ and n and λ, respectively. If ϕX is the
moment generating function of X, ϕY is the moment generating function of
Y , and ϕX+Y is the moment generating function of X + Y , then

ϕX(t) =

(
λ

λ− t

)m

for t < λ,

ϕY (t) =

(
λ

λ− t

)n

for t < λ, and

ϕX+Y (t) =

(
λ

λ− t

)m+n

for t < λ. It follows that X + Y is gamma with parameters m + n and λ.
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