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19.1 The unconscious statistician, revisited

The following is a generalization of the law of the unconscious statistician.

Theorem 19.1. If X and Y are discrete random variables with joint prob-
ability function p, h: R — R, and Y = A(X,Y’), then

EY] =) h(z.y)p(z,y).

Similarly, if X and Y are jointly continuous random variables with joint
density function f, h: R — R, and Y = h(X,Y), then

e = [ [ hea) o ydsy

Example 19.1. Suppose X and Y have joint probability density function

Fa) 2, f0o<r<y<l,
x? = .
Y 0, otherwise.

Then, for example,

1 Y 1 1
E[X]:/O /0 2xd:cdy:/0 yzdy:§
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and

1 Y 1 2
E[Y]:/O /0 2ydxdy:/0 2y2dy:§.

Note that, using the marginals fy and fy which we found previously, we
could have computed

E[X] Z/(:xfx(x)dx:/olm:(l—x)dx:1__:_

and

E[Y]Z/oo yfy(fv)diﬂ:/(]l?y?dy:;-

[e.e]

Example 19.2. Suppose X and Y are independent, each having a uniform
distribution on [0, 1]. Then, for example,

1l 1 1
E[XY]:/ / a:‘yda:dy:/ — ydy = —.
o Jo 0 2 4
Note that E[X] = 5 and E[Y] = 1, so we have, in this case, E[XY] =

E[X]E[Y]. This is in fact true in general for independent random variables.

19.2 Expectations of sums

Theorem 19.2. For any random variable X and real numbers a and b,
ElaX +b] = aE[X] +b.

Proof. We will assume X is continuous with density f (the proof for discrete
X is similar). In that case,
ElaX+b] = / (ax+Db) f(x)dx = a/ mf(m)dm+b/ f(z)dzr = aE[X]+b.

]

Example 19.3. Suppose X has a standard normal distribution. Then

1 o o2
E[X] = \/_2_7r/ xe  zdx



1 0
:—/ re 2d$—|——/ xre Qdilf
27 J oo
1 . _2? _ a2
= — im | —e 2 + lim e 2
2 (bﬂoo < b) b—oo 0)

1 ) b2 ) _»?
:—(hm (—1+€ 2>+hm<—e 2+1)>
2m \b——o0 b—o0

For 0 > 0 and —oo < p < 00, let Y = 0 X + p. Then Y is N(p,0?), and

E[Y] = 0E[X]+pu=p.

Theorem 19.3. If X is a random variable with moment generating function
¢x, a and b are real numbers, Y = a X + b, and ¢y is the moment generating
function of Y, then

oy (t) = eox(at).
Proof. We have

@y(t) _ E[et(aX+b)] _ E[eatXetb] _ etbSO)((CLﬂ-

Example 19.4. Suppose X is standard normal. Then

1 o 22
ox(t) = E/ e T dx

% x —2:ct)d

(& X

m/

%(33 t) _tQ)dI'

t
ez e~ 2@ D% gy

\/ﬂ

t
ez.

Now let Y = 0 X + u, where ¢ > 0 and —oco < p < oo. Then Y is N(u, o?),
and

5242 0242
oy (t) = oy (ot) = eMe™2 = M2
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Note that

and
F) = (14 0%)” + o) i+
EIY] = ¢}y (0) =
and

BIY?) = @ (0) = u + o*.
Theorem 19.4. For random variables X and Y and any real numbers a and
b,
ElaX +bY] = aE[X] + bE[Y].

Proof. Suppose X and Y are jointly continuous with joint density f. Then

ElaX +bY] = /OO /00 (ax + by) f(x,y)dzdy

a/ / xfxydxdy—i—b/ / yf(x,y)dzdy
E[X

|+ bE[Y

=a

]

More generally, for random variables Xy, X5, ..., X, and real numbers
ai, as, ..., a,, we have

Elay Xy + axXo + -+ + an, Xy = e E[Xy] + ag B[ Xo] + - -+ + a, El,].

Example 19.5. In this example we illustrate another method for finding
the expected value of a binomial random variable. First, suppose X has a
Bernoulli distribution with probability of success p. Then

EX]|=0x(1—p)+1xp=np.

Now suppose Xi, X, ..., X, are independent Bernoulli random variables,
each with probabilty of success p, and let

S,=X1+Xo+---+X,.
Then S, is binomial with parameters n and p. Moreover,

E[S,]| = E[ X1+ E[Xo] + - - - + E[X,] = np.



Example 19.6. Suppose n balls are drawn, without replacement, from an
urn containing M red balls and N black balls. For £ =1,2,...,n, let

{Lﬁﬂwkmbmnsm¢
k:

0, otherwise.
Then, for any £k =1,2,...,n,

C M(N+M—1)(N+M=2)---(N+M—n+1)
(N+MYN+M—-1)(N+M—-n+1)
M
TN+ M

Hence, if S, = X1 + Xo +--- + X, then

nM
ES,] = )
[5] N+ M
Note that, as in the previous example, X1, X, ..., X,, are Bernoulli variables;

however, in this case S, is hypergeometric, not binomial.

19.3 Expectations of products

Theorem 19.5. If X and Y are independnent random variables, then
E[XY]=FEX|E]Y].

Proof. Suppose X and Y are jointly continuous with marginal denisties fx
and fy, respectively. Then

Y] = [ [ ausa)elndsdy
= / Z yfy () / Z x fx (z)dzdy
= Dﬂ/wyﬁﬁmw

—00

— E[X]E[Y).



More generally, if Xy, X5, ..., X, are independent random variables,
then

Example 19.7. If X and Y are independent N(u,0?) random variables,
then
E[XY] = E[X]|E[Y] = 1>

Theorem 19.6. Suppose X1, X, ..., X, are independent random variables,
with moment generating functions ¢x,, Yx,, .., ¢x,, and ¥ = X7 + Xy +
-+ + X,,. Then the moment generating function of Y is

oy (1) = ox, (Hex, (1) - ox,, (1).
Proof. We have

E[ t(X1+Xo+ +Xn)]

py (1)

= Ele tX1ptXa etXn]
= B[] B Bl
= ¢x, (D)ex, (1) - ¢x, (1)
[
Note that, in particular, if X1, X, ..., X,, are idependent and identically

distributed (i.i.d) random variables, each with moment generating function
©, then the moment generating function of S, = X; + Xo +--- 4+ X, is

Example 19.8. Suppose X is Bernoulli with probability of success p. The
moment generating function of X is

ox(t) = Ele'™] = (1 —p) + pe'.

If Xq, Xo, ..., X, arei.i.d. Bernoulli random variables, each with probability
of success p, and S,, = X;+X,,+- - -+X,, then S, is binomial and has moment
generating function

©s,(t) = (1 —p+pe')".



19.4 Uniqueness of moment generating functions

We will find the following theorem very useful, although its proof is beyond
the scope of this course.

Theorem 19.7. Suppose X and Y are random variables with moment gen-
erating functions px and @y, respectively. If px(t) = @y (t) for all ¢ in some
interval (—tg, to), where to > 0, then X and Y have the same distribution.

Example 19.9. Suppose X and Y are independent binomial random vari-
ables, with parameters n and p and m and p, respectively. If ¢x is the
moment generating function of X, ¢y is the moment generating function of
Y, and px.y is the moment generating function of X + Y, then

ex(t) = (1 —p+pe')",

ey (t) = (1 —p+pe)™,

and
n+m

pxyy(t) = (1 —p+pe)
It follows that X + Y is binomial with parameters n + m and p.

Example 19.10. Suppose X and Y are independent Poisson random vari-
ables, with parameters A and p, respectively. If ¢ x is the moment generating
function of X, ¢y is the moment generating function of Y, and ¢x,y is the
moment generating function of X 4+ Y, then

px(t)=e )

(pY (t) _ eﬂ(etfl)’

and

x4y (t) = eOHIED,

It follows that X 4 Y is Poisson with parameter A + pu.

Example 19.11. Suppose X and Y are independent N (ux, 0% ) and N(uy,0%),
respectively, random variables. If ¢x is the moment generating function of
X, @y is the moment generating function of Y, and ¢x.y is the moment
generating function of X + Y, then

2,2
cht

pr(t) = e”X+T’
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2,2
@Y(t> — e“Y—’_GYT’

and
o'§(+o'§/)t2

(
OXLY (t) — e/’L+“Y+f

It follows that X + Y is N(ux + py,0% + o).

Example 19.12. Suppose X and Y are independent gamma random vari-
ables, with parameters m and A and n and A, respectively. If px is the
moment generating function of X, ¢y is the moment generating function of
Y, and @x.y is the moment generating function of X + Y, then

ot = (525)
oy (t) = (%)n

pxiv(t) = (%) "

for t < \. It follows that X + Y is gamma with parameters m +n and .

for t < A,

for t < A\, and



