Lecture 9: Angles and Triangles

9.1 Angles

Definition Given distinct noncollinear points A, B, and C in a metric geometry, we call the set

$$
\overrightarrow{B A} \cup \overrightarrow{B C}
$$

an angle, which we denote $\angle A B C$.
Note: An angle is a set of points, not a number. We will introduce the measure of an angle later. The distinction is similar to the distinction between the line segment $\overline{A B}$, which is a set of points, and the length of the line segment $A B$, which is a real number.

Theorem The only extreme point of an angle $\angle A B C$ is the point B.
Proof Suppose B is a passing point of $\angle A B C$. Then $P-B-Q$ for some points $P, Q \in$ $\angle A B C$. Suppose $P \in \overrightarrow{B A}$. If $Q \in \overrightarrow{B A}$, then B is a passing point of $\overrightarrow{B A}$, contradicting our previous result that B is an extreme point of $\overrightarrow{B A}$. Hence we must have $Q \in \overrightarrow{B C}$. But then $\overrightarrow{B A}=\overrightarrow{B P}$ and $\overrightarrow{B C}=\overrightarrow{B Q}$, and so

$$
\overleftrightarrow{A B}=\overleftrightarrow{B P}=\overleftrightarrow{B Q}=\overleftrightarrow{B C}
$$

contradicting the assumption that A, B, and C are noncollinear. Hence B is an extreme point of $\angle A B C$.

Clearly, if $P \in \angle A B C, P \neq B$, then P is a passing point of $\angle A B C$ since P is a passing point of either $\overrightarrow{B A}$ or $\overrightarrow{B C}$.

Theorem In a metric geometry, if $\angle A B C=\angle D E F$, then $B=E$.
Proof Follows immediately from the previous theorem.
Definition Given an angle $\angle A B C$ in a metric geometry, we call B the vertex of $\angle A B C$.

9.2 Triangles

Definition Given three noncollinear points A, B, and C in a metric geometry, we call the set

$$
\overline{A B} \cup \overline{B C} \cup \overline{A C}
$$

a triangle, which we denote $\triangle A B C$.

Theorem The only extreme points of a triangle $\triangle A B C$ are the points A, B, and C.
Proof Suppose A is a passing point of $\triangle A B C$. Then $P-A-Q$ for some points $P, Q \in \triangle A B C$. Now P and Q cannot both belong to $\angle B A C$, for then A would be a passing point of $\angle B A C$. If $P, Q \in \overline{B C}$, then,

$$
A \in \overleftrightarrow{P Q}=\overleftrightarrow{B C}
$$

contradicting the noncollinearity of A, B, and C. Hence one, and only, of P or Q must lie on $\overline{A B} \cup \overline{A C}$. Suppose $P \in \overline{A B}, Q \in \overline{B C}, Q \notin \overline{A B}$ and $Q \notin \overline{A C}$. Then

$$
\overleftrightarrow{A B}=\overleftrightarrow{A P}=\overleftrightarrow{A Q}
$$

so $Q \in \overleftrightarrow{A B}$. But $B-Q-C$, so $Q, B \in \overleftrightarrow{A B}$ and $Q, B \in \overleftrightarrow{B C}$, which would make $\overleftrightarrow{A B}=\overleftrightarrow{B C}$, again contradicting the noncollinearity of A, B, and C. So A is an extreme point of $\triangle A B C$. Similarly, B and C are extreme points of $\triangle A B C$. Clearly, all other points of $\triangle A B C$ are passing points of $\triangle A B C$.

Theorem If, in a metric geometry, $\triangle A B C=\triangle D E F$, then $\{A, B, C\}=\{D, E, F\}$.
Proof Follows immediately from the previous theorem.
Definition Given a triangle $\triangle A B C$ in a metric geometry, we call A, B, and C the vertices of $\triangle A B C$, and we call $\overline{A B}, \overline{A C}$, and $\overline{B C}$ the edges of $\triangle A B C$.

