Lecture 8: Line Segments and Rays

8.1 Line Segments

Definition Given distinct points A and B in a metric geometry, we call the set

$$
\overline{A B}=\{C: C \in \overleftrightarrow{A B} \text { and } C=A, C=B, \text { or } A-C-B\}
$$

the line segment from A to B.
Example Consider points $A=\left(x_{1}, y_{1}\right)$ and $B=\left(x_{2}, y_{2}\right)$ on the line ${ }_{c} L_{r}$ in the Poincaré Plane with $x_{1}<x_{2}$. Suppose $C=(x, y)$ with $A-C-B$. If $f:{ }_{c} L_{r} \rightarrow \mathbb{R}$ is the ruler defined by

$$
f(x, y)=\log \left(\frac{x-c+r}{y}\right)
$$

and $t_{1}=f(A), t_{2}=f(B)$, and $t=f(C)$, then $t_{1} * t * t_{2}$. Now $x_{1}=c+r \tanh \left(t_{1}\right)$, $x=c+r \tanh (t)$, and $x_{2}=c+r \tanh \left(t_{2}\right)$, and the hyperbolic tangent function is increasing, so $x_{1} * x * x_{2}$. Since $x_{1}<x_{2}$, we must have

$$
x_{1}<x<x_{2} .
$$

Hence

$$
\overline{A B} \subset\left\{C: C \in{ }_{c} L_{r}, C=(x, y), x_{1} \leq x \leq x_{2}\right\} .
$$

Now suppose $C \in{ }_{c} L_{r}, C=(x, y)$, and $x_{1} \leq x \leq x_{2}$. Since the function $g(t)=c+r \tanh (t)$ is increasing, g^{-1} is increasing. Since $t_{1}=f(A)=g^{-1}\left(x_{1}\right), t=f(C)=g^{-1}(x)$, and $t_{2}=f(B)=g^{-1}\left(x_{2}\right)$, it follows that $t_{1} \leq t \leq t_{2}$. Hence either $C=A\left(\right.$ it $\left.t=t_{1}\right)$, $A-C-B$ (if $t_{1}<t<t_{2}$), or $C=B$ (if $t=t_{2}$). Thus

$$
\left\{C: C \in{ }_{c} L_{r}, C=(x, y), x_{1} \leq x \leq x_{2}\right\} \subset \overline{A B} .
$$

Hence

$$
\overline{A B}=\left\{C: C \in{ }_{c} L_{r}, C=(x, y), x_{1} \leq x \leq x_{2}\right\} .
$$

Definition Let \mathcal{S} be a set of points in a metric geometry. We call a point $B \in S$ a passing point of S if there exist points P and Q in S such that $P-B-Q$. We call a point which is not a passing point of S an extreme point of S.

Theorem Given distinct points A and B in a metric geometry, the extreme points of $\overline{A B}$ are A and B.

Proof Suppose A is a passing point of $\overline{A B}$. Then there exist points $P, Q \in \overline{A B}$ such that $P-A-Q$. Now one of the following must hold: $B-P-A-Q, B=P, P-B-A-Q$,
$P-A-B-Q, B=Q$, or $P-A-Q-B$. The first three of these imply that $B-A-Q$, and so $Q \notin \overline{A B}$, and the last three imply $P-A-B$, and so $P \notin \overline{A B}$. Either of these conclusions contradicts our assumptions about P and Q. Hence A must be an extreme point of $\overline{A B}$. A similar argument shows that B is an extreme point of $\overline{A B}$.

Finally, consider a point $P \in \overline{A B}, P \neq A$ and $P \neq B$. Then $A-P-B$, so P is a passing point of $\overline{A B}$. Hence A and B are the only extreme points of $\overline{A B}$.

Theorem If A, B, C, and D are points in a metric geometry with $\overline{A B}=\overline{C D}$, then $\{A, B\}=\{C, D\}$

Proof The sets $\{A, B\}$ and $\{C, D\}$ are both characterized as the set of extreme points of $\overline{A B}$.

Definition We call the points A and B the endpoints, or vertices, of the line segment $\overline{A B}$.

Definition The length of a line segment $\overline{A B}$ is $A B$.

8.2 Rays

Definition Given distinct points A and B in a metric geometry, the ray from A toward B is the set

$$
\overrightarrow{A B}=\overrightarrow{A B} \cup\{C: C \in \overleftrightarrow{A B}, A-B-C\}
$$

Theorem If $A B$ are points in the Euclidean Plane $\left\{\mathbb{R}^{2}, \mathcal{L}_{2}, d_{E}\right\}$, then

$$
\overline{A B}=\left\{C: C \in \mathbb{R}^{2}, C=A+t(B-A), 0 \leq t \leq 1\right\}
$$

and

$$
\overrightarrow{A B}=\left\{C: C \in \mathbb{R}^{2}, C=A+t(B-A), t \geq 0\right\}
$$

Proof Homework
Theorem If A, B, and C are points in a metric geometry with $C \in \overrightarrow{A B}, C \neq A$, then $\overrightarrow{A B}=\overrightarrow{A C}$.

Proof Homework
Theorem If A, B, and C are points in a metric geometry with $\overrightarrow{A B}=\overrightarrow{C D}$, then $A=C$.
Proof Homework

Definition We call the point A the vertex, or initial point, of the ray $\overrightarrow{A B}$.
Theorem If A and B are distinct points in a metric geometry, then there exists a ruler $f: \overleftrightarrow{A B} \rightarrow \mathbb{R}$ such that

$$
\overrightarrow{A B}=\{P: P \in \overleftrightarrow{A B}, f(P) \geq 0\}
$$

Proof Let $f: \overleftrightarrow{A B} \rightarrow \mathbb{R}$ be ruler with origin A and B positive. Suppose $Q \in \overleftrightarrow{A B}$ and $f(Q) \geq 0$. Then either $f(Q)=0,0<f(Q)<f(B), f(Q)=f(B)$, or $0<f(B)<f(Q)$. Hence either $Q=A, A-Q-B, A=B$, or $A-B-Q$. Thus $Q \in \overrightarrow{A B}$, and so

$$
\{P: P \in \overleftrightarrow{A B}, f(P) \geq 0\} \subset \overrightarrow{A B}
$$

Now suppose $Q \in \overrightarrow{A B}$. If $f(Q)<0$, then $f(Q)<f(A)<f(B)$, so $Q-A-B$. But then $Q \notin \overrightarrow{A B}$. Hence we must have $f(Q) \geq 0$. Thus

$$
\overrightarrow{A B} \subset\{P: P \in \overleftrightarrow{A B}, f(P) \geq 0\}
$$

and so

$$
\overrightarrow{A B}=\{P: P \in \overleftrightarrow{A B}, f(P) \geq 0\}
$$

8.3 Congruence

Definition We say line segments $\overline{A B}$ and $\overline{C D}$ are congruent, written $\overline{A B} \simeq \overline{C D}$, if $A B=C D$.

Segment Construction Given a ray $\overrightarrow{A B}$ and a segment $\overline{P Q}$ in a metric geometry, then there exists a unique point $C \in \overrightarrow{A B}$ with $\overline{P Q} \simeq \overline{A C}$.

Proof Let f be a ruler for $\overleftrightarrow{A B}$ with A as origin and B positive. Let $r=P Q$ and let $C=f^{-1}(r)$. Then, since $f(C)=r>0, C \in \overrightarrow{A B}$ and

$$
A C=|f(A)-f(C)|=|0-r|=r=P Q
$$

so $\overline{A C} \simeq \overline{P Q}$. Now suppose $D \in \overrightarrow{A B}$ with $\overline{A D} \simeq \overline{P Q}$. Then, since $f(D)>0$,

$$
f(C)=r=A D=|f(D)-f(A)|=|f(D)|=f(D),
$$

implying that $D=C$ (since f is injective). Hence the point C is unique.

Segment Addition In a metric geometry, if $A-B-C, P-Q-R, \overline{A B} \simeq \overline{P Q}$, and $\overline{B C} \simeq \overline{Q R}$, then $\overline{A C} \simeq \overline{P R}$.

Proof Homework
Segment Subtraction In a metric geometry, if $A-B-C, P-Q-R, \overline{A B} \simeq \overline{P Q}$, and $\overline{A C} \simeq \overline{P R}$, then $\overline{B C} \simeq \overline{Q R}$.

Proof Homework

