Lecture 8: Line Segments and Rays

8.1 Line Segments

Definition Given distinct points A and B in a metric geometry, we call the set

$$\overline{AB} = \{C : C \in AB \text{ and } C = A, C = B, \text{ or } A - C - B\}$$

the *line segment* from A to B.

Example Consider points $A = (x_1, y_1)$ and $B = (x_2, y_2)$ on the line ${}_{c}L_{r}$ in the Poincaré Plane with $x_1 < x_2$. Suppose C = (x, y) with A - C - B. If $f : {}_{c}L_{r} \to \mathbb{R}$ is the ruler defined by

$$f(x,y) = \log\left(\frac{x-c+r}{y}\right)$$

and $t_1 = f(A)$, $t_2 = f(B)$, and t = f(C), then $t_1 * t * t_2$. Now $x_1 = c + r \tanh(t_1)$, $x = c + r \tanh(t)$, and $x_2 = c + r \tanh(t_2)$, and the hyperbolic tangent function is increasing, so $x_1 * x * x_2$. Since $x_1 < x_2$, we must have

$$x_1 < x < x_2.$$

Hence

$$\overline{AB} \subset \{C : C \in {}_{c}L_{r}, C = (x, y), x_{1} \leq x \leq x_{2}\}.$$

Now suppose $C \in {}_{c}L_{r}$, C = (x, y), and $x_{1} \leq x \leq x_{2}$. Since the function $g(t) = c + r \tanh(t)$ is increasing, g^{-1} is increasing. Since $t_{1} = f(A) = g^{-1}(x_{1})$, $t = f(C) = g^{-1}(x)$, and $t_{2} = f(B) = g^{-1}(x_{2})$, it follows that $t_{1} \leq t \leq t_{2}$. Hence either C = A (it $t = t_{1}$), A - C - B (if $t_{1} < t < t_{2}$), or C = B (if $t = t_{2}$). Thus

$$\{C: C \in {}_{c}L_{r}, C = (x, y), x_{1} \leq x \leq x_{2}\} \subset \overline{AB}.$$

Hence

$$\overline{AB} = \{C : C \in {}_{c}L_{r}, C = (x, y), x_{1} \le x \le x_{2}\}.$$

Definition Let S be a set of points in a metric geometry. We call a point $B \in S$ a passing point of S if there exist points P and Q in S such that P - B - Q. We call a point which is not a passing point of S an extreme point of S.

Theorem Given distinct points A and B in a metric geometry, the extreme points of \overline{AB} are A and B.

Proof Suppose A is a passing point of \overline{AB} . Then there exist points $P, Q \in \overline{AB}$ such that P - A - Q. Now one of the following must hold: B - P - A - Q, B = P, P - B - A - Q,

P-A-B-Q, B=Q, or P-A-Q-B. The first three of these imply that B-A-Q, and so $Q \notin \overline{AB}$, and the last three imply P-A-B, and so $P \notin \overline{AB}$. Either of these conclusions contradicts our assumptions about P and Q. Hence A must be an extreme point of \overline{AB} . A similar argument shows that B is an extreme point of \overline{AB} .

Finally, consider a point $P \in \overline{AB}$, $P \neq A$ and $P \neq B$. Then A - P - B, so P is a passing point of \overline{AB} . Hence A and B are the only extreme points of \overline{AB} .

Theorem If A, B, C, and D are points in a metric geometry with $\overline{AB} = \overline{CD}$, then $\{A, B\} = \{C, D\}$

Proof The sets $\{A, B\}$ and $\{C, D\}$ are both characterized as the set of extreme points of \overline{AB} .

Definition We call the points A and B the *endpoints*, or *vertices*, of the line segment \overline{AB} .

Definition The *length* of a line segment \overline{AB} is AB.

8.2 Rays

Definition Given distinct points A and B in a metric geometry, the *ray* from A toward B is the set

$$AB = \overline{AB} \cup \{C : C \in AB, A - B - C\}.$$

Theorem If AB are points in the Euclidean Plane $\{\mathbb{R}^2, \mathcal{L}_2, d_E\}$, then

$$\overline{AB} = \{ C : C \in \mathbb{R}^2, C = A + t(B - A), 0 \le t \le 1 \}$$

and

$$\overrightarrow{AB} = \{C : C \in \mathbb{R}^2, C = A + t(B - A), t \ge 0\}.$$

Proof Homework

Theorem If A, B, and C are points in a metric geometry with $C \in \overrightarrow{AB}$, $C \neq A$, then $\overrightarrow{AB} = \overrightarrow{AC}$.

Proof Homework

Theorem If A, B, and C are points in a metric geometry with AB = CD, then A = C.

Proof Homework

Definition We call the point A the vertex, or *initial point*, of the ray AB.

Theorem If A and B are distinct points in a metric geometry, then there exists a ruler $f : \overleftrightarrow{AB} \to \mathbb{R}$ such that

$$\overrightarrow{AB} = \{P : P \in \overleftarrow{AB}, f(P) \ge 0\}.$$

Proof Let $f : \overrightarrow{AB} \to \mathbb{R}$ be ruler with origin A and B positive. Suppose $Q \in \overrightarrow{AB}$ and $f(Q) \ge 0$. Then either f(Q) = 0, 0 < f(Q) < f(B), f(Q) = f(B), or 0 < f(B) < f(Q). Hence either Q = A, A - Q - B, A = B, or A - B - Q. Thus $Q \in \overrightarrow{AB}$, and so

$$\{P: P \in \overleftrightarrow{AB}, f(P) \ge 0\} \subset \overrightarrow{AB}$$

Now suppose $Q \in \overrightarrow{AB}$. If f(Q) < 0, then f(Q) < f(A) < f(B), so Q - A - B. But then $Q \notin \overrightarrow{AB}$. Hence we must have $f(Q) \ge 0$. Thus

$$\overrightarrow{AB} \subset \{P: P \in \overleftarrow{AB}, f(P) \ge 0\},\$$

and so

$$\overrightarrow{AB} = \{P : P \in \overleftrightarrow{AB}, f(P) \ge 0\}.$$

8.3 Congruence

Definition We say line segments \overline{AB} and \overline{CD} are *congruent*, written $\overline{AB} \simeq \overline{CD}$, if AB = CD.

Segment Construction Given a ray \overrightarrow{AB} and a segment \overrightarrow{PQ} in a metric geometry, then there exists a unique point $C \in \overrightarrow{AB}$ with $\overrightarrow{PQ} \simeq \overrightarrow{AC}$.

Proof Let f be a ruler for AB with A as origin and B positive. Let r = PQ and let $C = f^{-1}(r)$. Then, since f(C) = r > 0, $C \in \overrightarrow{AB}$ and

$$AC = |f(A) - f(C)| = |0 - r| = r = PQ,$$

so $\overline{AC} \simeq \overline{PQ}$. Now suppose $D \in \overrightarrow{AB}$ with $\overline{AD} \simeq \overline{PQ}$. Then, since f(D) > 0,

$$f(C) = r = AD = |f(D) - f(A)| = |f(D)| = f(D),$$

implying that D = C (since f is injective). Hence the point C is unique.

Segment Addition In a metric geometry, if A - B - C, P - Q - R, $\overline{AB} \simeq \overline{PQ}$, and $\overline{BC} \simeq \overline{QR}$, then $\overline{AC} \simeq \overline{PR}$.

Proof Homework

Segment Subtraction In a metric geometry, if A - B - C, P - Q - R, $\overline{AB} \simeq \overline{PQ}$, and $\overline{AC} \simeq \overline{PR}$, then $\overline{BC} \simeq \overline{QR}$.

 $\mathbf{Proof} \quad \mathrm{Homework}$