Lecture 7: Betweenness

7.1 Betweenness

Definition If A, B, C are distinct, collinear points in a metric geometry $\{\mathcal{P}, \mathcal{L}, d\}$ with

$$
d(A, B)+d(B, C)=d(A, C)
$$

then we say B is between A and C.
Notation: We write $A-B-C$ to denote that B is between A and C. Moreover, we will let $A B$ denote $d(A, B)$ as long as the distance function d is clear from the context. In particular, we can say that, for distinct collinear points A, B, C in a metric geometry,

$$
A-B-C \text { if and only if } A B+B C=A C
$$

Example Let $A=(4,4), B=(1,5)$, and $C=(5,3)$ in the Poincaré plane. Then $\overleftrightarrow{A B}={ }_{c} L_{r}$, where

$$
c=\frac{(16-25)+(16-1)}{2(4-1)}=\frac{6}{6}=1
$$

and

$$
r=\sqrt{(4-1)^{2}+16}=5
$$

Now C also lies on ${ }_{1} L_{5}$ since

$$
(5-1)^{2}+3^{2}=25 .
$$

Hence A, B, and C are collinear. Now $f:{ }_{1} L_{5} \rightarrow \mathbb{R}$ defined by

$$
f(x, y)=\log \left(\frac{x-1+5}{y}\right)=\log \left(\frac{x+4}{y}\right)
$$

is a ruler for ${ }_{1} L_{5}$. The coordinates of A, B, and C are

$$
\begin{gathered}
f(A)=\log (2), \\
f(B)=\log (1)=0,
\end{gathered}
$$

and

$$
f(C)=\log (3)
$$

so

$$
\begin{aligned}
& A B=|\log (2)-0|=\log (2), \\
& B C=|0-\log (3)|=\log (3),
\end{aligned}
$$

and

$$
A C=|\log (2)-\log (3)|=\log \left(\frac{3}{2}\right) .
$$

Hence $B C=B A+A C$, so $B-A-C$.

Theorem If $A-B-C$, then $C-B-A$.
Proof Since $A-B-C, A, B$, and C are distinct and collinear. Moreover,

$$
C A=A C=A B+B C=C B+B A .
$$

Hence $C-B-A$.

7.2 Betweenness and rulers

Definition For real numbers x, y, and z, we say y is between x and z, denoted $x * y * z$, if either $x<y<z$ or $z<y<x$.

Theorem Suppose A, B, and C are three points on a line ℓ with ruler f. Let $x=f(A)$, $y=f(B)$, and $z=f(C)$. Then $A-B-C$ if and only if $x * y * z$.

Proof First note that since f is a bijection, A, B, and C are distinct if and only if x, y, and z are distinct.

Assume A, B, and C are distinct and suppose $A-B-C$. Then

$$
\begin{aligned}
& A B=|x-y|, \\
& B C=|y-z|,
\end{aligned}
$$

and

$$
A C=|x-z|,
$$

so $A B+B C=A C$ implies that

$$
|x-y|+|y-z|=|x-z| .
$$

Now exactly one of the following is true: (1) $x<y<z$, (2) $z<y<z$, (3) $y<x<z$, (4) $z<x<y$, (5) $x<z<y$, or (6) $y<z<x$. Suppose (3) holds. Then

$$
\begin{aligned}
& |x-y|=x-y, \\
& |y-z|=z-y,
\end{aligned}
$$

and

$$
|x-z|=z-x .
$$

Hence

$$
(x-y)+(z-y)=z-x
$$

implying that

$$
x=y,
$$

a contradiction. Similarly, cases (4), (5), and (6) lead to contradictions. Hence either $x<y<z$ or $z<y<x$, in which case $x * y * z$.

Now suppose $x * y * z$. If $x<y<z$, then

$$
\begin{aligned}
& |x-y|=y-x \\
& |y-z|=z-y,
\end{aligned}
$$

and

$$
|x-z|=z-x .
$$

Hence

$$
A B+B C=(y-x)+(z-y)=z-x=|x-z|=A C
$$

and so $A-B-C$. A similar argument holds if $z<y<x$.

Theorem Given three distinct points on a line in a metric geometry, one and only one of them is between the other two.

Proof Immediate consequence of the previous theorem and properties of the real numbers.

Theorem If A and B are distinct points in a metric geometry, then there exist points C and D with $A-B-C$ and $A-D-B$.

Proof Let f be a ruler for $\overleftrightarrow{A B}$ with $f(A)=0$ and $f(B)>0$. Let $y=f(B)+1$ and let

$$
z=\frac{f(B)}{2}
$$

Let $C=f^{-1}(y)$ and let $D=f^{-1}(z)$. Then $f(A)<f(B)<f(C)$, so $A-B-C$ and $f(A)<f(D)<f(B)$, so $A-D-B$.

Definition We define $A-B-C-D$ to mean $A-B-C, A-B-D, A-C-D$, and $B-C-D$.

Theorem $\quad A-B-C-D$ if and only if $A-B-C$ and $B-C-D$.
Proof Homework

